58
S. K. Guchhait, C. Madaan / Tetrahedron Letters 52 (2011) 56–58
Table 2 (continued)
References and notes
Entry
Aminoimidazole-fused nucleobasesb
Time (h)
6
Yieldc (%)
52
1. Review paper: Legraverend, M.; Grierson, D. S. Bioorg. Med. Chem. 2006, 14,
3987–4006.
2. Borrmann, T.; Abdelrahman, A.; Volpini, R.; Lambertucci, C.; Alksnis, E.;
Gorzalka, S.; Knospe, M.; Schiedel, A. C.; Cristalli, G.; Müller, C. E. Bioorg. Med.
Chem. 2009, 52, 5974–5989.
12
3. (a) Gray, N. S.; Wodicka, L.; Thunnissen, A.-M. W. H.; Norman, T. C.; Kwon, S.;
Espinoza, F. H.; Morgan, D. O.; Barnes, G.; LeClerc, S.; Meijer, L.; Kim, S.-H.;
Lockhart, D. J.; Schultz, P. G. Science 1998, 281, 533–538; (b) Chapman, E.; Ding,
S.; Schultz, P. G.; Wong, C.-H. J. Am. Chem. Soc. 2002, 124, 14524–14525; (c)
Ahn, H.-S.; Bercovici, A.; Boykow, G.; Bronnenkant, A.; Chackalamannil, S.;
Chow, J.; Cleven, R.; Cook, J.; Czarniecki, M.; Domalski, C.; Fawzi, A.; Green, M.;
Gündes, A.; Ho, G.; Laudicina, M.; Lindo, N.; Ma, K.; Manna, M.; McKittrick, B.;
Mirzai, B.; Nechuta, T.; Neustadt, B.; Puchalski, C.; Pula, K.; Silverman, L.; Smith,
E.; Stamford, A.; Tedesco, R. P.; Tsai, H.; Tulshian, D.; Vaccaro, H.; Watkins, R.
W.; Weng, X.; Witkowski, J. T.; Xia, Y.; Zhang, H. J. Med. Chem. 1997, 40, 2196–
2210; (d) Suzuki, H.; Yamamoto, M.; Shimura, S.; Miyamoto, K.-I.; Yamamoto,
K.; Sawanishi, H. Chem. Pharm. Bull. 2002, 50, 1163–1168; (e) Blythin, D. J.;
Kaminski, J. J.; Domalski, M. S.; Spitler, J.; Solomon, D. M.; Conn, D. J.; Wong, S.-
C.; Verbiar, L. L.; Bober, L. A.; Chiu, P. J. S.; Watnick, A. S.; Siegel, M. I.; Hilbert, J.
M.; McPhail, A. T. J. Med. Chem. 1986, 29, 1099.
13
14
12
6
58
50
a
Reaction conditions: nucleobases, aldehydes and isocyanides in 1:1:1 molar
4. Chang, Y.-T.; Wignall, S. M.; Rosania, G. R.; Gray, N. S.; Hanson, S. R.; Su, A. I.;
Merlie, J., Jr.; Moon, H.-S.; Sangankar, S. B.; Perez, O.; Heald, R.; Schultz, P. G. J.
Med. Chem. 2001, 44, 4497–4500.
5. Pulido, D.; Sánchez, A.; Robles, J.; Pedroso, E.; Grandas, A. Eur. J. Org. Chem.
2009, 1398–1406.
ratio, ZrCl4 (10 mol %), DMSO, 70 °C.
b
All products were characterized by 1H, 13C, mass and IR, and analyzed by CHN or
HRMS.
c
Isolated yields.
6. (a) Rosania, G. R.; Merlie, J., Jr.; Gray, N.; Chang, Y.-T.; Schultz, P. G.; Heald, R.
Proc. Natl. Acad. Sci. 1999, 96, 4797–4802; (b) Chen, S.; Zhang, Q.; Wu, X.;
Schultz, P. G.; Ding, S. J. Am. Chem. Soc. 2004, 126, 410–411; (c) Gey, C.; Giannis,
A. Angew. Chem., Int. Ed. 2004, 43, 3998–4000.
7. (a) Wang, R.-W.; Gold, B. Org. Lett. 2009, 11, 2465–2468; (b) Jacobsen, M. F.;
Knudsen, M. M.; Gothelf, K. V. J. Org. Chem. 2006, 71, 9183–9190; (c) Dey, S.;
Garner, P. J. Org. Chem. 2000, 65, 7697–7699; (d) Porcheddu, A.; Giacomelli, G.;
Piredda, I.; Carta, M.; Nieddu, G. Eur. J. Org. Chem. 2008, 40, 5786–5797; (e)
Michel, B. Y.; Strazewski, P. Tetrahedron Lett. 2007, 63, 9836–9841; (f) Hudson,
R. H. E.; Goncharenko, M.; Wallman, A. P.; Wojciechowski, F. Synlett 2005,
1442–1446.
8. Arico, J. W.; Calhoun, A. K.; Salandria, K. J.; McLaughlin, L. W. Org. Lett. 2010, 12,
120–122.
9. (a) Zhong, M.; Nowak, I.; Cannon, J. F.; Robins, M. J. J. Org. Chem. 2006, 71, 4216–
4221; (b) Nugiel, D. A.; Cornelius, L. A. M.; Corbett, J. W. J. Org. Chem. 1997, 62,
201–203; (c) Ding, S.; Gray, N. S.; Ding, Q.; Schultz, P. G. J. Org. Chem. 2001, 66,
8273–8276.
increased yield. We then examined the scope of this method for the
multicomponent reactions of adenine, guanine, and cytosine with
various aldehydes and isocyanides (Table 2).15 These reactions fur-
nished corresponding substituted aminoimidazole-[i]-condensed
adenine (Table 2, entries 1–9), [b]-condensed guanine (Table 2, en-
tries 10 and 11), [c]-condensed cytosine (Table 2, entries 12–14) in
moderate to good yields. The products were characterized by 1H
and 13C NMR, mass and IR spectroscopies, and confirmed by CHN
analysis or HRMS. Guanine is known as notoriously difficult-to-
protect/modify because of its very poor solubility in almost all
common solvents (including water) and its multi-functional/struc-
tural nature (imidazole, amide, and guanidine). With the present
method guanine was found to undergo modification albeit in low
yields (Table 2, entries 10 and 11). The reactions of guanine were
found to be incomplete even by increasing the reaction tempera-
ture or prolonging the reaction. Since a wide range of aldehydes
are commercially available and various isocyanides are accessible,
this synthetic approach can produce diverse-substituted N-fused
aminoimidazole-purines and cytosine derivatives. The modified
nucleobases can undergo the post modification at free amines
(N9 for adenine and guanine and N1 for cytosine). The tolerance
of halogen (Cl and Br) and alkene functionalities in the method
provides the opportunity of their various further chemical manip-
ulations. Thus, the modification of nucleobase-motifs in this ap-
proach and the possible post-chemical manipulation by usual
methods can offer a library of heteroaromatic-fused nucleobases
and nucleosides.
10. Barbero, N.; SanMartin, R.; Domínguez, E. Org. Biomol. Chem. 2010, 8, 841–845.
ˇ
ˇ
ˇ
11. Cerna, I.; Pohl, R.; Klepetárová, B.; Hocek, M. J. Org. Chem. 2010, 75, 2302–2308.
12. (a) Guchhait, S. K.; Jadeja, K.; Madaan, C. Tetrahedron Lett. 2009, 50, 6861–6865;
(b) Colombo, M.; Peretto, I. Drug Discov. Today 2008, 13, 677–684; (c) Dömling,
A. Chem. Rev. 2006, 106, 17–89.
13. (a) Guchhait, S. K.; Madaan, C. Org. Biomol. Chem. 2010, 8, 3631–3634; (b)
Guchhait, S. K.; Madaan, C. Synlett 2009, 628–632; (c) Guchhait, S. K.; Madaan,
C.; Thakkar, B. S. Synthesis 2009, 3293–3300.
14. GBB MCR was first reported in 1998 by three independent research groups,
Groebke, Blackburn and Bienaymé (a) Groebke, K.; Weber, L.; Mehlin, F. Synlett
1998, 661–663; (b) Blackburn, C.; Guan, B.; Fleming, P.; Shiosaki, K.; Tsai, S.
Tetrahedron Lett. 1998, 39, 3635–3638; (c) Bienaymé, H.; Bouzid, K. Angew.
Chem., Int. Ed. 1998, 37, 2234–2237.
15. Representative synthesis of N-tert-Butyl-8-(4-chlorophenyl)-3H-imidazo[1,2-
i]purin-7-amine (Table 2, entry 1): To a mixture of adenine (0.27 g, 2 mmol)
and 4-chlorobenzaldehyde (0.28 g, 2 mmol) in DMSO (5 mL), tert-butyl
isocyanide (0.17 g, 2 mmol) and ZrCl4 (47 mg, 10 mol %) were added. The
mixture was allowed to stir at 70 °C under open air. After 7.5 h of reaction
(monitored by TLC), DMSO was partially removed from the resultant mixture
by rotary evaporation under reduced pressure (2 mm Hg) at 50–60 °C (water
bath temperature). The direct column chromatographic purification of crude
product over silica gel (mesh size: 60–120) eluting with EtOAc–hexane
In conclusion, we have developed a method for the unprece-
dented scaffold-modification of adenine, guanine, and cytosine
into their aminoimidazole-condensed derivatives. Owing to the
therapeutic relevance of the structural modification and the sim-
plicity of the method, being one-step and multicomponent in nat-
ure and alternative to usual multi-step synthetic routes involving
protection–deprotection or SNAr, this method may find potential
application.
afforded
N-tert-butyl-8-(4-chlorophenyl)-3H-imidazo[1,2-i]purin-7-amine
(0.462 g, 68%); faint yellowish white solid; mp = 229–231 °C; MS (APCI) m/z:
341 (MH+); HRMS (m/z) calcd for C17H17ClN6 341.1281 (MH+), found 341.1275;
1H NMR (400 MHz, DMSO-d6): d 1.02 (s, 9H), 4.80 (s, NH), 7.48 (d, J = 8.4 Hz,
2H), 8.21–8.24 (m, 3H), 9.02 (s, 1H). 13C NMR (100 MHz, DMSO-d6): d 29.8,
55.7, 123.9, 128.0, 129.3, 131.6, 133.5, 134.5, 135.3, 139.6. IR (KBr)
3567, 1642, 1486, 1375, 1319, 1196, 1090, 1013 cmÀ1
Anal. Calcd for
17H17ClN6: C, 59.91; H, 5.03; N, 24.66. Found: C, 59.67; H, 5.06; N, 24.98.
mmax = 3650,
.
C
3-(tert-Butylamino)-2-(4-chlorophenyl)imidazo[1,2-c]pyrimidin-5(6H)-one
(Table 2, entry 12):Yellowish white solid, mp = 222–224 °C; MS (APCI) m/z: 317
(MH+); 1H NMR (400 MHz, DMSO-d6): d 0.96 (s, 9H), 2.98 (s, NH), 4.58 (s, NH),
6.45 (d, J = 7.4 Hz, 1H), 7.12 (d, J = 7.4 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H), 8.10 (d,
J = 8.4 Hz, 2H). 13C NMR (100 MHz, DMSO-d6): d 29.8, 57.5, 98.3, 128.4, 129.2,
Acknowledgment
129.4, 129.6, 131.6, 133.3, 134.1, 142.9, 149.2. IR (KBr) mmax = 3337, 3096, 1707,
We gratefully acknowledge financial support from DST, New
Delhi for this investigation.
1546, 1486, 1363, 1305, 1193, 1088 cmÀ1. Anal. Calcd for C16H17ClN4O: C,
60.66; H, 5.41; N, 17.69. Found: C, 60.28; H, 5.56; N, 18.01.