LETTER
Ring-Rearrangement Metathesis of Substituted 2-Aminonorbornenes
1665
(6) (a) Stragies, R.; Blechert, S. Tetrahedron 1999, 8179.
(b) Pfeiffer, M. W. B.; Phillips, A. J. J. Am. Chem. Soc. 2005,
127, 5334. (c) Winkler, J. D.; Asselin, S. M.; Shepard, S.;
Yuan, J. Org. Lett. 2004, 6, 3821. (d) Wrobleski, A.;
Sahasrabudhe, K.; Aube, J. J. Am. Chem. Soc. 2004, 126,
5475. (e) Chandler, C. L.; Phillips, A. J. Org. Lett. 2005, 7,
3493. (f) Yasui, H.; Yamamoto, S.; Saaki, D.; Kawasaki, S.;
Watanabe, G.; Tadano, K.-I. J. Org. Chem. 2004, 69, 8789.
(g) Boyer, F.-D.; Hanna, I.; Ricard, L. Org. Lett. 2004, 6,
1817. (h) Quinn, K. J.; Isaacs, A. K.; Arvary, R. A. Org. Lett.
2004, 6, 4143. (i) Lesma, G.; Crippa, S.; Danieli, B.;
Passarella, D.; Sacchetti, A.; Silvani, A.; Virdis, A.
Tetrahedron 2004, 60, 6437. (j) Csaky, A. G.; Medel, R.;
Murcia, M. C.; Plumet, J. Helv. Chim. Acta 2005, 88, 1387.
(7) Handbook of Metathesis, Vol. 2; Grubbs, R. H., Ed.; Wiley-
VCH: Weinheim, 2003, Chap. 2-4, 151–175.
a
n
N
NTs
Ts
n
13a n = 2 (80%)
12a n = 2
12b n = 3
(80%)
13b n = 3
a
n
N
NTs
n
Ts
(80%)
(34%)
12c n = 1
12d n = 2
12e n = 3
13c n = 1
13d n = 2
(8) Arjona, O.; Csaky, A. G.; Murica, M. C.; Plumet, J.
Tetrahedron Lett. 2000, 41, 9777.
(9) Ruckert, A.; Reisele, D.; Blechert, S. Tetrahedron Lett.
2001, 42, 5245.
(10) Hagiwara, H.; Katsumi, T.; Endou, S.; Hoshi, T.; Suzuki, T.
Tetrahedron 2002, 58, 6651.
N
Ts
(11) (a) Voightmann, U.; Blechert, S. Synthesis 2000, 893.
(b) Kitamura, T.; Mori, M. Org. Lett. 2001, 3, 1161.
(c) Ovaa, H.; Stapper, C.; van der Marel, G. A.; Overkleeft,
H. S.; van Boom, J. H.; Blechert, S. Tetrahedron 2002, 58,
7503. (d) Arjona, O.; Csaky, A. G.; Medel, R.; Plumet, J. J.
Org. Chem. 2002, 67, 1380. (e) Arjona, O.; Csaky, A. G.;
Murcia, C.; Plumet, J. ARKIVOC 2002, (v), 171. (f)Arjona,
O.; Csaky, A. G.; Leon, V.; Medel, R.; Plumet, J.
Tetrahedron Lett. 2004, 45, 565. (g) Holub, N.; Neidhofer,
J.; Blechert, S. Org. Lett. 2005, 7, 1227. (h) Groaz, E.;
Banti, D.; North, M. Tetrahedron Lett. 2007, 48, 1927.
(12) (a) Maechling, S.; Norman, S. E.; Mckendrick, J. E.; Basra,
S.; Knoppner, K.; Blechert, S. Tetrahedron Lett. 2006, 47,
189. (b) Nadany, A. E.; Mckendrick, J. E. Synlett 2006,
2139. (c) Nadany, A. E.; Mckendrick, J. E. Tetrahedron Lett.
2007, 48, 4071.
(84%)
13e
Scheme 5 Reagents and conditions: (a) Grubbs I (10 mol%),
ethene, CH2Cl2.
only beginning to show reduced yields when the tether
length increased. We are currently exploring the possibil-
ity of developing this methodology towards a synthesis of
piperidine alkaloids such as the streptazolins.20
Acknowledgment
This work was supported by the EPSRC (AEN).
(13) (a) Krieger, H. Suom. Kemistil., B 1963, 36, 68.
(b) Freeman, P. K.; Balls, D. M.; Brown, D. J. J. Org. Chem.
1968, 33, 2211.
References and Notes
(14) (a) Longobardi, M.; Schenone, P.; Bargagna, A.; Berrino, L.;
Matera, C.; Marmo, E. Farmco Ed. Sci. 1985, 40, 152.
(b) Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.;
Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61,
3849. Analogous reduction of norborn-5-en-2-one:
(c) Mayo, P.; Orlova, G.; Goddard, J. D.; Tam, W. J. Org.
Chem. 2001, 66, 5182. (d) Oppolzer, W.; Chapuis, C.;
Dupuis, D.; Guo, M. Helv. Chim. Acta 1985, 68, 2100.
(15) Spectroscopic Data for 5a
(1) (a) Bazan, G. C.; Oskam, J. H.; Cho, H. N.; Park, L. Y.;
Schrock, R. R. J. Am. Chem. Soc. 1991, 113, 6889.
(b) Bazan, G. C.; Khosravi, E.; Schrock, R. R.; Feast, W. J.;
Gibson, V. C.; O’Regan, M. B.; Thomas, J. K.; Davis, W. M.
J. Am. Chem. Soc. 1990, 112, 8378. (c) Schrock, R. R.
Tetrahedron 1999, 55, 8141. (d) Schrock, R. R. Acc. Chem.
Res. 1990, 23, 158.
(2) (a) Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem.
Soc. 1993, 115, 9858. (b) Scwabb, P.; Grubbs, R. H.; Ziller,
J. W. J. Am. Chem. Soc. 1996, 118, 100.
(3) (a) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A.
H. J. Am. Chem. Soc. 2000, 122, 8168. (b) Dunne, A. M.;
Mix, S.; Blechert, S. Tetrahedron 2003, 59, 2733.
(4) For reviews on the history, synthesis, and activity of the
molybdenum-based metathesis catalysts, see: (a) Schrock,
R. R.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2003, 42,
4592. For recent reviews on ruthenium-based RCM, see:
(b) Fürstner, A. Angew. Chem. Int. Ed. 2000, 39, 3012.
(c) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34,
18.
1H NMR (400 MHz, CDCl3, 70 °C): d = 1.35–1.38 (m, 1 H,
CH2CHN), 1.35–1.38 (m, 1 H, CH2CHCHN), 2.12–2.33 (m,
1 H, CH2CHN), 2.12–2.33 (m, 1 H, CH2CHCHN), 2.12–
2.33 (m, 1 H, CHCH2CHN), 2.90–2.94 (m, 1 H, CHCHN),
3.69 (dt, 1 H, CHN, J = 10.5, 6.5 Hz), 4.06 (d, 1 H, CH2Ph,
J = 15.0 Hz), 4.90–5.03 (m, 2 H, CH=CH2), 5.29 (d, 1 H,
CH2Ph, J = 15.0 Hz), 5.71 (ddd, 1 H, CH=CH2, J = 17.0,
13.0, 7.0 Hz), 5.87 (dd, 1 H, HC=CH, J = 10.0, 2.5 Hz), 6.24
(dd, 1 H, HC=CH, J = 10.0, 3.0 Hz), 7.25–7.33 (m, 5 H,
5 × ArH). 13C NMR (100 MHz, CDCl3, 70 °C): d = 36.6
(CHCHN), 38.6 (CH2CHCHN), 39.0 (CH2CHN), 40.1
(CHCH2CHN), 48.5 (CH2Ph), 58.7 (CHN), 114.5
(CH=CH2), 122.0 (HC=CH), 127.8 (1 × ArH), 128.4
(2 × ArH), 129.0 (2 × ArH), 138.0 (1 × Ar), 141.2
(CH=CH2), 143.4 (HC=CH), 162.7 (C=O). IR (thin film):
1610 (C=C), 1667 (C=O), 2955 (sat. C–H) cm–1. MS: m/z
calcd: 254.1546 [MH+]; found: 254.1546.
(5) Blechert, S.; Connon, S. J. Angew. Chem. Int. Ed. 2003, 42,
1900.
Synlett 2007, No. 11, 1663–1666 © Thieme Stuttgart · New York