180
W. Ying et al. / Tetrahedron Letters 52 (2011) 177–180
HO
Supplementary data
DMAP
BH3
NaOH, H2O2
71%
MeO
Me
OMe
trans-16
Supplementary data (experimental procedures, characteriza-
Et3N, TsCl
84%
tion data; 1H and 13C spectra for new compounds) associated with
this article can be found, in the online version, at doi:10.1016/
Me
17
OMe
PhO2S
MeO
TsO
1. PhSH, K2CO3
2. m-CPBA
63%
MeO
Me
OMe
References and notes
Me
OMe
Me
19
Me
1. Haydel, S. E. Pharmaceuticals 2010, 3, 2268.
OMe
2. Gutierrez-Lugo, M.-T.; Bewley, C. A. J. Med. Chem. 2008, 51, 2606.
3. Rodriguez, A. D.; Ramirez, C.; Rodriguez, I. I.; Barnes, C. L. J. Org. Chem. 2000, 65,
1390–1398.
4. Rodriguez, A. D.; Ramirez, C.; Rodriguez, I. I.; Gonzalez, E. Org. Lett. 1999, 1,
527–530.
OMe
18
Scheme 4. Synthesis of a crystalline derivative of trans-16.
16. It should be noted that the terminal vinyl proton trans to the
internal vinyl proton resonated at 4.62 ppm for trans-16 but ap-
peared at 4.89 ppm in cis-16. This helped in assigning the stereo-
chemistry of the isomers of 4, as mentioned above.
The basis for the trans selectivity in these cyclization presum-
ably arises from a chair like six-membered transition state in
which the substituents are disposed in a pseudoequatorial orienta-
tion. How substitution patterns on the aromatic ring and the puta-
tive allylic cation intermediate affect this selectivity must be the
subject of future studies.
5. Harmata, M.; Hong, X. J. Am. Chem. Soc. 2003, 125, 5754.
6. (a) Harmata, M.; Hong, X. Org. Lett. 2005, 7, 3581–3583; (b) Harmata, M.; Cai,
Z.; Chen, Y. J. Org. Chem. 2009, 74, 5559.
7. Harmata, M.; Hong, X.; Barnes, C. L. Tetrahedron Lett. 2003, 44, 7261.
8. Harmata, M.; Hong, X.; Schreiner, P. R. J. Org. Chem. 2008, 73, 1290.
9. Harmata, M.; Zheng, P. Heterocycles 2009, 77, 279.
10. Kim, A. I.; Rychnovsky, S. D. Angew. Chem., Int. Ed. 2003, 42, 1267.
11. For other syntheses of elisapterosin B, see: (a) Waizumi, N.; Stankovic, A. R.;
Rawal, V. H. J. Am. Chem. Soc. 2003, 125, 13022; (b) Jarvo, E. R.; Lawrence, B. M.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 6043; (c) Boezio, A. A.; Jarvo, E.
R.; Lawrence, B. M.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 6046; (d)
Davies, H. M. L.; Dai, X.; Long, M. S. J. Am. Chem. Soc. 2006, 128, 2485.
12. Namba, K.; Yamamoto, H.; Sasaki, I.; Mori, K.; Imagawa, H.; Nishizawa, M. Org.
Lett. 2008, 10, 1767.
13. Harmata, M.; Ying, W.; Barnes, C. L. Tetrahedron Lett. 2009, 50, 2326.
14. Harmata, M.; Pavri, N. Angew. Chem., Int. Ed. 1999, 38, 2419.
15. Further details of this oxidation will be reported elsewhere.
16. Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune, S.; Roush,
W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183.
17. 4.79 and 3.94 ppm for trans-4 and 4.81 and 4.43 ppm for cis-4.
18. Werle, S.; Fey, T.; Neudörfl, J. r. M.; Schmalz, H.-G. Org. Lett. 2007, 9, 3555–
3558.
19. Molecular mechanics calculations that the most stable conformation of trans-
16 was 5.9 kcal/mol more stable that the most stable conformation of cis-16.
20. Crystallographic data (excluding structure factors) for 19 has been deposited
with the Cambridge Crystallographic Data Centre as supplementary
publication numbers CCDC 734229. Copies of the data can be obtained, free
of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax:
+44(1223)336033; Email: deposit@ccdc.ac.uk].
6. Conclusion
In summary, using benzothiazine chemistry and Hg(OTf)2-cata-
lyzed diastereoselective IFCA, we have synthesized the potential
precursors (4 and 16) to elisapterosin B. We are now targeting
the synthesis of diene 3 to finish this total synthesis. The results
of these studies will be reported in due course.
Acknowledgment
This work was supported by the NIH (1R01-AI59000-01A1) to
whom we are grateful.