3832
M. S. Drenichev et al.
PAPER
5-O-(1,1,3,3-Tetraisopropyl-3-methoxydisiloxan-1-yl) Deriva-
tive 5
6.50 (s, 1 H, H1′Ado), 6.50 (br s, 2 H, NH2), 8.19 (s, 1 H, H2), 8.49
s (1 H, H8).
White amorphous powder; yield: 49 mg (46%); Rf = 0.21 (CH2Cl2–
EtOH, 95:5).
13C NMR (100 MHz, CDCl3): d = 12.82, 13.01, 13.08, 13.66, 16.90,
17.08, 17.13, 17.20, 17.43, 17.49, 17.61 (i-Pr), 59.65 (C5′Ado),
61.42 (C5′′Ara), 67.61 (C3′Ado), 76.28 (C3′′Ara), 77.18 (C2′Ado),
78.61 (C2′′Ara), 78.76 (C4′Ado), 82.17 (C4′′Ara), 87.39 (C1′Ado),
89.19 (C1′′Ara), 105.71 (C5), 138.53 (C8), 148.70 (C4), 153.27
(C6), 155.52 (C2).
MS (APCI): m/z [M + H+] calcd for C27H48N5O9Si2: 642.30; found:
642.42; m/z [M – H+ + HCOOH] calcd for C28H48N5O11Si2: 686.29;
found: 686.27.
1H NMR (400 MHz, DMSO-d6): d = 0.95–1.17 (m, 28 H, i-Pr), 1.75
(d, JMe,6 = 1 Hz, 3 H, Me-Thy), 2.06–2.13 (m, 2 H, overlapping
H2′b and H2′a), 3.48 (s, 3 H, MeO), 3.81–3.91 (m, 3 H, overlapping
H4′, H5′b and H5′a), 4.21–4.27 (m, 1 H, H3′), 5.38 (d, J3¢-OH,3¢ = 4.4
Hz, 1 H, 3′-OH, exchangeable with D2O), 6.26 (dd, J1¢,2¢b = 7.2 Hz,
J1¢,2¢a = 6.8 Hz, 1 H, H1′), 7.38 (q, J6,Me = 1 Hz, 1 H, H6), 11.28 (br
s, 1 H, NH).
13C NMR (100 MHz, DMSO-d6): d = 12.03, 12.16, 12.28 (i-Pr),
12.40 (Me-Thy), 17.02, 17.05, 17.08, 17.13 (i-Pr), 39.24 (C2′),
50.17 (MeO), 62.73 (C5′), 70.29 (C3′), 83.76 (C4′), 86.55 (C1′),
109.45 (C5), 135.43 (C6), 150.35 (C2), 163.63 (C4).
UV (MeOH): lmax (log e) = 259 nm (4.155), pH 7–13; 259 nm
(4.146), pH 1.
9-{2-O-[(2-Aminoethoxy)methyl]-3,5-O-(1,1,3,3-tetraisopropyl-
disiloxane-1,3-diyl)-b-D-ribofuranosyl}adenine (13)
MS (APCI): m/z [M + H+] calcd for C23H45N2O7Si2: 517.27; found:
517.43; m/z [M – H– + HCOOH] calcd for C24H45N2O9Si2: 561.27;
found: 561.27.
Compound 12 (1.56 g, 2.3 mmol) was dissolved in 8 M MeNH2 in
EtOH soln (70 mL). The soln was kept at 35 °C. The reaction was
monitored by TLC (CH2Cl2–EtOH, 9:1); after 6 h complete conver-
sion of 12 was observed. The soln was evaporated to dryness (bath
temp <35 °C) and co-evaporated with CH2Cl2 (2 × 20 mL) to afford
13 (1.33 g, 100%) as a foam of sufficient purity to use in further re-
actions; Rf = 0.33 (CH2Cl2–EtOH, 9:1).
1H NMR (400 MHz, CDCl3): d = 0.9–1.2 (m, 28 H, i-Pr), 1.93 (br s,
2 H, aliphatic NH2), 2.88 (t, J2¢¢,1¢¢b = J2¢¢,1¢¢a = 5.1 Hz, 2 H,
OCHbHaCH2NH2), 3.63 (dt, J1¢¢b,1¢¢a = –10, J1¢¢b,2¢¢ = 5.1 Hz, 1 H,
OCHbHaCH2NH2), 3.79 (dt, J1¢¢a,1¢¢b = –10, J1¢¢a,2¢¢ = 5.1 Hz, 1 H,
OCHbHaCH2NH2), 4.02 (dd, J5¢b,5¢a = –13.4 Hz, J5¢b,4¢ = 2.5 Hz, 1 H,
H5′b), 4.14 (ddd, J4¢,3¢ = 9.1 Hz, J4¢,5¢b = 2.5 Hz, J4¢,5¢a = 1.8 Hz, 1 H,
H4′), 4.23 (dd, J5¢a,5¢b = –13.4 Hz, J5¢a,4¢ = 1.8 Hz, 1 H, H5′a), 4.50
(d, J2¢3¢ = 4.4 Hz, 1 H, H2′), 4.70 (dd, J3¢,4¢ = 9.1 Hz, J3¢,2¢ = 4.4 Hz,
1 H, H3′), 4.99 (d, J = –6.9 Hz, 1 H, OCHbHaO), 5.01 (d, J = –6.9
Hz, 1 H, OCHbHaO), 6.01 (br s, 2 H, 6-NH2), 6.06 (s, 1 H, H1′), 8.12
(s, 1 H, H2), 8.28 (s, 1 H, H8).
3-O-(1,1,3,3-Tetraisopropyl-3-methoxydisiloxan-1-yl) Deriva-
tive 6
Syrup; yield: 26 mg (24%); Rf = 0.28 (CH2Cl2–EtOH, 95:5).
1H NMR (400 MHz, DMSO-d6): d = 0.90–1.18 (m, 28 H, i-Pr), 1.77
(d, JMe,6 = 1.0 Hz, 3 H, Me-Thy), 2.11 (ddd, J2¢b,2¢a = –13.1 Hz,
J2¢b,1¢ = 5.7 Hz, J2¢b,3¢ = 2.7 Hz, 1 H, H2′b), 2.20 (ddd, J2¢a,2¢b = –13.1
Hz, J2¢a,1¢ = 7.9 Hz, J2¢a,3¢ = 5.3 Hz, 1 H, H2′a), 3.48 (s, 3 H, MeO),
3.56 (ddd, J5¢b,5¢a = –12.1 Hz, J5¢b,OH = 5.0 Hz, J5¢b,4¢ = 3.5 Hz, 1 H,
H5′b), 3.62 (ddd, J5¢a,5¢b = –12.1 Hz, J5¢a,OH = 5.0 Hz, J5¢a,4¢ = 4.1 Hz,
1 H, H5′a), 3.86 (ddd, J4¢,5¢b = 3.5 Hz, J4¢,5¢a = 4.1 Hz, J4¢,3¢ = 2.6 Hz,
1 H, H4′), 4.59 (ddd, J3¢,2¢a = 5.3 Hz, J3¢,2¢b = 2.7 Hz, J3¢,4¢ = 2.6 Hz, 1
H, H4′), 5.12 (dd, JOH,5¢b = JOH,5¢a = 5.0 Hz, 5′-OH, exchangeable
with D2O), 6.18 (dd, J1¢,2¢a = 7.9 Hz, J1¢,2¢b = 5.7 Hz, 1 H, H1′), 7.70
(q, J6,Me = 1.0 Hz, 1 H, H6), 11.24 (br s, 1 H, NH).
13C NMR (100 MHz, DMSO-d6): d = 12.17, 12.17, 12.19, 12.40 (i-
Pr), 12.44 (Me-Thy), 16.98, 17.02, 17.11, 17.15 (i-Pr), 39.81 (C2′),
50.21 (MeO), 61.02 (C5′), 71.99 (C3′), 83.85 (C4′), 87.42 (C1′),
109.39 (C5), 135.91 (C6), 150.42 (C2), 163.71 (C4).
MS (APCI): m/z [M + H+] calcd for C23H45N2O7Si2: 517.27; found:
517.43; m/z [M – H+ + HCOOH] calcd for C24H45N2O9Si2: 561.27;
found: 561.29.
13C NMR (100 MHz, CDCl3): d = 12.77, 12.96, 13.03, 13.48, 16.97,
17.10, 17.24, 17.36, 17.42, 17.52 (i-Pr), 41.83 (OCH2CH2NH2),
60.03 (C5′), 69.19 (OCH2CH2NH2), 70.75 (C3′), 77.42 (C2′), 81.60
(C4′), 88.86 (C1′), 95.32 (OCH2O), 120.35 (C5), 138.67 (C2),
149.11 (C4), 153.10 (C8), 155.62 (C6).
9-{2-O-[(2-Benzamidoethoxy)methyl]-3,5-O-(1,1,3,3-tetraiso-
propyldisiloxane-1,3-diyl)-b-D-ribofuranosyl}adenine (14a)
Bz2O (190 mg, 0.8 mmol) and Et3N (0.25 mL, 1.5 mmol) were add-
ed to a soln of 13 (400 mg, 0.7 mmol) in DCE (50 mL) at r.t. with
TLC monitoring (CH2Cl2–EtOH, 95:5); after 4 h the conversion was
completed. The mixture was quenched by addition of sat. aq
NaHCO3 soln (20 mL). The resulting mixture was stirred vigorous-
ly at r.t. for additional 1 h. The organic layer was separated, washed
with H2O (20 mL), dried (Na2SO4), and evaporated in vacuo. The
residue was purified by column chromatography to yield 14a (410
mg, 85%) as a foam; Rf = 0.25 (CH2Cl2–EtOH, 95:5).
1-{2-O-[(2-Hydroxyethoxy)methyl]-3,5-O-(1,1,3,3-tetraisopro-
pyldisiloxane-1,3-diyl)-b-D-ribofuranosyl}uracil (8)
Compound 7 (275 mg, 0.46 mmol) was dissolved in 8 M MeNH2 in
EtOH soln (3 mL). After 20 h (20 °C) the resulted soln was evapo-
rated. The residue was purified by column chromatography afford-
ing 8 (219 mg, 85%) as a powder.
1H NMR and 13C NMR spectra were identical to those reported ear-
lier.12
9-[2-O-(a-D-Arabinofuranosyl)-3,5-(1,1,3,3-tetraisopropyl-
disiloxane-1,3-diyl)-b-D-ribofuranosyl]adenine (11)
Disaccharide 9 (1.00 g, 0.94 mmol) was dissolved in 8 M MeNH2
in EtOH soln (8mL) and left at r.t. After 24 h the solvent was evap-
orated. The residue was purified by column chromatography to
yield 11 (465 mg, 77%) as a foam; Rf = 0.17 (CH2Cl2–EtOH, 9:1).
1H-NMR (400 MHz, CDCl3): d = 0.9–1.2 (m, 28 H, i-Pr), 3.63–3.76
(m, 2 H, OCH2CH2NH), 3.83 (dt, J1¢¢b,1¢¢a = –10.4 Hz, J1¢¢b,2¢¢ = 5.0
Hz, 1 H, OCHbHaCH2NH), 3.96 (dt, J1¢¢a,1¢¢b = –10.4 Hz, J1¢¢a,2¢¢ = 5.0
Hz, 1 H, OCHbHaCH2NH), 4.00 (dd, J5¢b,5¢a = –13.1 Hz, J5¢b,4¢ = 2.6
Hz, 1 H, H5′b), 4.15 (ddd, J4¢,3¢ = 9.3 Hz, J4¢,5¢b = 2.6 Hz, J4¢,5¢a = 2.0
Hz, 1 H, H4′), 4.24 (dd, J5¢a,5¢b = –13.1 Hz, J5¢a,4¢ = 2.0 Hz, 1 H,
H5′a), 4.47 (d, J2¢3¢ = 4.7 Hz, 1 H, H2′), 4.63 (dd, J3¢,4¢ = 9.3 Hz,
1H NMR (400 MHz, CDCl3): d = 0.80–1.10 (m, 28 H, i-Pr), 3.71
(dd, J5¢¢a,5¢¢b = –12.5 Hz, J5¢¢b,4¢¢ = 1.2 Hz, 1 H, H5′′bAra), 3.80 (dd,
J5¢¢a,5¢¢b = –12.5 Hz, J5¢¢a,4¢¢ = 2.3 Hz, 1 H, H5′′aAra), 3.95 (dd,
J5¢b,5¢a = –13.5 Hz, J5¢b,4¢ = 2.3 Hz, 1 H, H5′bAdo), 4.01 (m, 1 H,
H4′bAdo), 4.10 (dd, J3¢¢,4¢¢ = 8.9 Hz, J3¢¢,2¢¢ = 1.7 Hz, 1 H, H3′′Ara), 4.14
(m 2 H, overlapping H2′′Ara and H4′′Ara), 4.23 (d, J5¢a,5¢b = –13.4 Hz,
1 H, H5′aAdo), 4.52 (d, J2¢,3¢ = 5.0 Hz, 1 H, H2′Ado), 4.58 (dd,
J
3¢,2¢ = 4.7 Hz, 1 H, H3′), 5.01 (d, J = –6.9 Hz, 1 H, OCHbHaO), 5.07
(d, J = –6.9 Hz, 1 H, OCHbHaO), 7.09 (br t, J = 5.3 Hz, 1 H, NH),
7.31 (t, J = 7.5 Hz, 2 H, m-HBz), 7.41 (t, J = 7.5 Hz, 1 H, p-HBz),
7.68 (t, J = 7.5 Hz, 2 H, o-HBz), 8.14 (s, 1 H, H2), 8.23 (s, 1 H, H8).
13C NMR (100 MHz, CDCl3): d = 12.71, 12.96, 13.00, 13.47, 16.91,
17.04, 17.08, 17.22, 17.36, 17.42, 17.52 (i-Pr), 40.10
(OCH2CH2NH), 59.80 (C5′), 68.40 (OCH2CH2NH), 68.82 (C3′),
J3¢,4¢ = 9.0 Hz, J3¢,2¢ = 5.0 Hz, 1 H, H3′Ado), 5.66 (s, 1 H, H1′′Ara),
Synthesis 2010, No. 22, 3827–3834 © Thieme Stuttgart · New York