10.1002/chem.202002265
Chemistry - A European Journal
COMMUNICATION
J. Debreczeni, J. Breed, S. Tentarelli, B. Aquila, J. E. Dowling, A. Whitty
and N. P. Grimster, Org. Biomol. Chem., 2017, 15, 9685.
[12] a) F. Izzo, M. Schäfer, R. Stockman and U. Lücking, Chem. Eur. J., 2017,
23, 15189. b) E. L. Briggs, A. Tota, M. Colella, L. Degennaro, R. Luisi
and J. A. Bull, Angew. Chem. Int. Ed., 2019, 58, 14303. c) J. Bull, L.
Degennaro and R. Luisi, Synlett, 2017, 28, 2525.
In conclusion, we have reported a new, practical method to
access sulfonimidamides from bench-stable sulfinamide salt
building blocks by a SuFEx reaction of sulfonimidoyl fluorides. We
describe the first facile route to enantioenriched sulfonimidamides,
which are currently underrepresented in the life sciences.
Moreover, the stereocontrolled synthesis of enantioenriched
sulfonimidoyl fluorides is reported for the first time. Similar to the
achiral sulfonyl fluorides, we see great potential for
enantioenriched sulfonimidoyl fluorides as novel warheads for
chemical biology and molecular pharmacology. Our synthetic
methodology has a broad substrate scope of sulfinamide salt
starting materials and both primary and secondary amines are
suitable coupling partners for the SuFEx reaction to access a
diverse array of sulfonimidamides. The methodology can be
applied to the late stage functionalization of drug molecules all in
good to excellent yields, which has the potential to accelerate the
preparation of novel chemical entities and diverse chemical
libraries.
[13] H. Takei, I. Watanabe and T. Mukaiyama, Bull. Chem. Soc. Jpn., 1965,
38, 1989.
[14] C. R. Johnson, E. U. Jonsson, A. Wambsgans and C. C. Bacon, J. Org.
Chem., 1979, 44, 2061.
[15] Y. Chen and J. Gibson, RSC Adv., 2015, 5, 4171.
[16] T. Q. Davies, A. Hall and M. C. Willis, Angew. Chem. Int. Ed., 2017, 56,
14937.
[17] S. V. Zasukha, V. M. Timoshenko, A. A. Tolmachev, V. O. Pivnytska, O.
Gavrylenko, S. Zhersh, Y. Shermolovich and O. O. Grygorenko, Chem.
Eur. J., 2019, 25, 6928.
[18] M. Bremerich, C. M. Conrads, T. Langletz and C. Bolm, Angew. Chem.
Int. Ed., 2019, 58, 19014.
[19] For preparation and use of sulfonimidoyl fluorides from the
corresponding chlorides using KF, see: a) C. R. Johnson, K. G. Bis, J. H.
Cantillo, N. A. Meanwell, M. F. D. Reinhard, J. R. Zeller and G. P. Vonk,
J. Org. Chem., 1983, 48, 1. b) R. Kowalczyk, A. J. F. Edmunds, R. G.
Hall, C. Bolm, Org. Lett. 2011, 13, 768. c) J. Guo, C. Kuang, J. Rong, L.
Li, C. Ni and J. Hu, Chem. Eur. J., 2019, 25, 7259. d) For a CF3 reagent:
M. Wright, C. Martínez-Lamenca, J. E. Leenaerts, P. E. Brennan, A. A.
Trabanco and D. Oehlrich, J. Org. Chem., 2018, 83, 9510.
[20] B. Gao, S. Li, P. Wu, J. E. Moses and K. B. Sharpless, Angew. Chem.
Int. Ed., 2018, 57, 1939.
Acknowledgements
We gratefully acknowledge The Royal Society [University
Research Fellowship, UF140161 (to J. A. B.), URF appointed
grant RG150444, and URF enhancement grant, RGF\EA\180031],
and EPSRC [CAF to J.A.B. (EP/J001538/1), DTA Studentships
(to S.G. and E.L.B.)] and Imperial-College FoNS kick-start funding.
[21] For a single example via the sulfonimidoyl chloride, see: C. Worch, I.
Atodiresei, G. Raabe and C. Bolm, Chem. Eur. J., 2010, 16, 677.
[22] D. Liang, D. E. Streefkerk, D. Jordaan, J. Wagemakers, J. Baggerman,
H. Zuilhof, Angew. Chem. Int. Ed. 2020, 59, 7494.
[23] M. Moir, J. J. Danon, T. A. Reekie and M. Kassiou, Expert Opin. Drug
Discov., 2019, 14, 1137.
Keywords: sulfur • sulfonimidamides • synthetic methods •
[24] A. L. Tribby, I. Rodríguez, S. Shariffudin and N. D. Ball, J. Org. Chem.,
2017, 82, 2294.
chirality • SuFEx reaction
[25] A. T. Davies, J. M. Curto, S. W. Bagley and M. C. Willis, Chem. Sci.,
2017, 8, 1233.
[1]
[2]
D. Saha, A. Kharbanda, W. Yan, N. R. Lakkaniga, B. Frett and H. Y. Li,
J. Med. Chem., 2020, 63, 441.
[26] a) N. Xin, Y. Sun, M. He, C. J. Radke and J. M. Prausnitz, Fluid Phase
Equilib., 2018, 461, 1. b) D. A. Wynn, M. M. Roth, B. D. Pollard, Talanta,
1984, 31, 1036.
a) P. K. Chinthakindi, T. Naicker, N. Thota, T. Govender, H. G. Kruger
and P. I. Arvidsson, Angew. Chem. Int. Ed., 2017, 56, 4100. b) F.
Sehgelmeble et al., ChemMedChem, 2012, 7, 396. c) F. Izzo, M. Schäfer,
P. Lienau, U. Ganzer, R. Stockman and U. Lücking, Chem. Eur. J., 2018,
24, 9295.
[27] This is an alternative hypothesis to Zuilhof who proposed the
participation of DBU in the racemisation of the sulfonimidoyl fluorides.
(For related proposed amine involvement in sulfonyl fluorides, see: V.
Gembus, F. Marsais and V. Levacher, Synlett, 2008, 1463.) However,
their experimental results would also be consistent with our hypothesis
as the improved ee using the sodium phenolate over the corresponding
phenol may be attributed to the formation of NaF, removing fluoride ions
from solution and preventing racemisation of the sulfonimidoyl fluoride.
[28] a) M. Reggelin and C. Zur, Synthesis, 2000, 2000, 1. b) M. Reggelin and
B. Junker, Chem. Eur. J., 2001, 7, 1232.
[3]
[4]
a) U. Lücking, Org. Chem. Front., 2019, 6, 1319. b) U. Lücking, Angew.
Chem. Int. Ed., 2013, 52, 9399. c) J. A. Sirvent and U. Lücking,
ChemMedChem, 2017, 12, 487.
a) M. Frings, C. Bolm, A. Blum and C. Gnamm, Eur. J. Med. Chem., 2017,
126, 225. b) H. J. Lim, W. H. Lee and S. J. Park, Molecules, 2019, 24,
3451.
[5]
[6]
C. Gnamm, A. Jeanguenat, A. C. Dutton, C. Grimm, D. P. Kloer and A.
J. Crossthwaite, Bioorg. Med. Chem. Lett., 2012, 22, 3800.
a) A. Min et al., Mol. Cancer Ther., 2017, 16, 566. b) K. M. Foote et al.,
J. Med. Chem. 2018, 61, 9889; c) F. P. Vendetti, A. Lau, S. Schamus, T.
P. Conrads, M. J. O’Connor, C. J. Bakkenist, Oncotarget, 2015, 6, 44289.
a) U. Lücking, et al., ChemMedChem, 2013, 8, 1067. b) U. Lücking et al.,
ChemMedChem, 2017, 12, 1776.
[29] Nucleophilic attack of the S(IV) species to form sulfonimidoyl chlorides is
known to occur with retention of the configuration of the sulfur center. a)
E. U. Jonsson and C. R. Johnson, J. Am. Chem. Soc., 1971, 93, 5308.
b) M. R. Jones and D. J. Cram, J. Am. Chem. Soc., 1974, 96, 2183.
[30] C. Drago, L. Caggiano and R. F. W. Jackson, Angew. Chem. Int. Ed.,
2005, 44, 7221.
[7]
[8]
[9]
U. Lücking et al., Cancer Res., 2017, 77, 984.
[31] M. Zenzola, R. Doran, R. Luisi and J. A. Bull, J. Org. Chem., 2015, 80,
6391.
G. C. Nandi and P. I. Arvidsson, Adv. Synth. Catal., 2018, 360, 2976.
[10] a) J. Dong, L. Krasnova, M. G. Finn, K. B. Sharpless, Angew. Chem. Int.
Ed. 2014, 53, 9430. b) F. Liu, H. Wang, S. Li, G. A. L. Bare, X. Chen, C.
Wang, J. E. Moses, P. Wu and K. B. Sharpless, Angew. Chem. Int. Ed.,
2019, 58, 8029. c) Z. Liu, J. Li, S. Li, G. Li, K. B. Sharpless and P. Wu, J.
Am. Chem. Soc., 2018, 140, 2919. d) For recent reviews, see: P. K.
Chinthakindi and P. I. Arvidsson, Eur. J. Org. Chem., 2018, 2018, 3648.
e) A. S. Barrow, C. J. Smedley, Q. Zheng, S. Li, J. Dong and J. E. Moses,
Chem. Soc. Rev., 2019, 48, 4731.
[11] a) L. H. Jones and J. W. Kelly, RSC Med. Chem., 2020, 11, 10. b) A.
Narayanan and L. H. Jones, Chem. Sci., 2015, 6, 2650. c) H. Mukherjee,
5
This article is protected by copyright. All rights reserved.