2494
Y. Liu et al.
LETTER
(4) For reviews, see: (a) Ciganek, E. Org. React. (N.Y.) 1997,
51, 201. (b) Basavaiah, D.; Rao, P. D.; Hyma, R. S.
Tetrahedron 1996, 52, 8001. (c) Basavaiah, D.; Rao, A. J.;
Satyanarayana, T. Chem. Rev. 2003, 103, 811.
(11) All Baylis–Hillman acetates were prepared according to the
literature: (a) Hoffman, H. M. R.; Rabe, J. Angew. Chem.,
Int. Ed. Engl. 1983, 22, 795. (b) David, H. O.; Kenneth, M.
N. J. Org. Chem. 2003, 68, 6427.
(5) For recent examples, see: (a) Chandrasekhar, S.; Basu, D.;
Rambabu, C. Tetrahedron Lett. 2006, 47, 3059.
(12) According to NOESY experiments, there is no NOE
correlation between the signal of the internal olefin proton
and the allylic methylene protons.
(b) Shanmugarn, P.; Rajasingh, P. Synlett 2005, 939.
(c) Das, B.; Majhi, A.; Banerjee, J.; Chowdhury, N.;
Venkateswarlu, K. Tetrahedron Lett. 2005, 46, 7913.
(d) Das, B.; Mahender, G.; Chowdhury, N.; Banerjee, J.
Synlett 2005, 1000. (e) Kabalka, G. W.; Venkataiah, B.;
Dong, G. Org. Lett. 2003, 5, 3803. (f) Kabalka, G. W.;
Venkataiah, B.; Dong, G. Tetrahedron Lett. 2003, 44, 4673.
(6) (a) Liu, Y. K.; Li, J.; Zheng, H.; Xu, D. Q.; Xu, Z. Y.; Zhang,
Y. M. Synlett 2005, 2999. (b) Liu, Y. K.; Xu, D. Q.; Xu, Z.
Y.; Zhang, Y. M. J. Zhejiang Univ. Science, B 2006, 7, 393.
(c) Li, J.; Wang, X. X.; Zhang, Y. M. Synlett 2005, 1039.
(d) Li, J.; Wang, X. X.; Zhang, Y. M. Tetrahedron Lett.
2005, 46, 5233.
(13) The trisubstituted cinnamic ester moiety manifests a
significant role in several biologically active compounds,
see: (a) Senokuchi, K.; Nakai, H.; Nakayama, Y.; Odagaki,
Y.; Sakaki, K.; Kato, M.; Maruyama, T.; Miyazaki, T.; Ito,
H.; Kamiyasu, K.; Kim, S.; Kawamura, M.; Hamanaka, N. J.
Med. Chem. 1995, 38, 4508. (b) Senokuchi, K.; Nakai, H.;
Nakayama, Y.; Odagaki, Y.; Sakaki, K.; Kato, M.;
Maruyama, T.; Miyazaki, T.; Ito, H.; Kamiyasu, K.; Kim, S.;
Kawamura, M.; Hamanaka, N. J. Med. Chem. 1995, 38,
2521. (c) Watanabe, T.; Hayashi, K.; Yoshimatsu, S.; Sakai,
K.; Takeyama, S.; Takashima, K. J. Med. Chem. 1980, 23,
50.
(7) Liu, Y. K.; Xu, X. S.; Zheng, H.; Xu, D. Q.; Xu, Z. Y.;
Zhang, Y. M. Synlett 2006, 571.
(14) (2E)-Methyl cinnamic eaters prepared from Baylis–Hillman
adducts or derivatives by other approaches, see:
(8) One-Pot Synthesis of Di(Z-allyl) Disulfides or (2E)-
Methyl Cinnamic Esters; General Procedure: In a 25-mL
flask were added Na2SSO3·5H2O (0.25 g, 1.0 mmol),
Baylis–Hillman acetate 1 (1.0 mmol), and anhyd MeOH
(15 mL). The mixture was stirred at r.t. for 4–8 h until the
sodium (Z)-allyl thiosulfates were formed.7 MeOH was
removed and THF (20 mL) was added under an inert
atmosphere. Then Sm (0.15 g, 1 mmol) and a trace amount
of I2 were added to the resulting mixture followed by the
addition of a sat. aq solution of NH4Cl (4 mL) dropwise. The
mixture was stirred at r.t. for the time given in Table 1. Upon
completion, the reaction mixture was quenched with dil. HCl
(5%, 15 mL), extracted with Et2O (2 × 30 mL), washed with
brine (15 mL), and dried over MgSO4. After evaporation of
the solvent, the residue was purified by chromatography
[cyclohexane–EtOAc (9:1) (R = alkyl groups) or
(a) Shadakshari, U.; Nayak, S. K. Tetrahedron 2001, 57,
4599. (b) Ravichandran, S. Synth. Commun. 2001, 31, 2055.
(c) Das, B.; Banerjee, J.; Majhi, A.; Mahender, G.
Tetrahedron Lett. 2004, 45, 9225. (d) Li, J.; Qian, W. X.;
Zhang, Y. M. Tetrahedron 2004, 60, 5793. (e) Li, J.; Xu,
H.; Zhang, Y. M. Tetrahedron Lett. 2005, 46, 1931.
(f) Chandrasekhar, S.; Chandrashekar, G.; Vijeender, K.;
Reddy, M. S. Tetrahedron Lett. 2006, 47, 3475.
(15) Compound 3a: IR (film): 1719, 1642 cm–1. 1H NMR (CDCl3,
400 MHz): d = 1.10 (t, 6 H, J = 7.2 Hz), 2.30–2.37 (m, 4 H),
3.69 (s, 4 H), 3.77 (s, 6 H), 6.93 (t, 2 H, J = 7.2 Hz). 13
C
NMR (CDCl3, 100 MHz): d = 13.34, 22.47, 35.00, 51.85,
127.44, 147.90, 166.97. MS (70 eV): m/z (%) = 318 (M+).
Anal. Calcd for C14H22O4S2: C, 52.80; H, 6.96. Found: C,
53.23; H, 6.90.
Compound 3b: IR (film): 1721, 1642 cm–1. 1H NMR
(CDCl3, 400 MHz): d = 0.88 (t, 6 H, J = 7.2 Hz), 1.25–1.47
(m, 20 H), 2.32 (q, 4 H, J = 7.2 Hz), 3.70 (s, 4 H), 3.77 (s, 6
H), 6.95 (t, 2 H, J = 7.2 Hz). 13C NMR (CDCl3, 100 MHz):
d = 22.59, 28.84, 29.09, 29.19, 29.24, 29.32, 31.71, 35.29,
51.89, 127.92, 146.78, 166.99. MS (70 eV): m/z (%) = 458
(M+). Anal. Calcd for C24H42O4S2: C, 62.84; H, 9.23. Found:
C, 62.51; H, 9.28.
cyclohexane–EtOAc (6:1) (R = aryl groups)].
(9) (a) Karchner, J. H. The Analytical Chemistry of Sulfur and its
Compounds; Wiley: New York, 1972. (b) Ogawa, A.
Tetrahedron Lett. 1987, 28, 3271. (c) Antebi, S.
Tetrahedron Lett. 1985, 26, 2609.
(10) (a) Parry, R. J. Tetrahedron 1983, 39, 1215. (b) Arora, A.;
Tripathi, C.; Shukla, Y. Curr. Cancer Ther. Rev. 2005, 1,
199. (c) Arora, A.; Seth, K.; Shukla, Y. Carcinogenesis
2004, 25, 941. (d) Thomas, R. D.; Green, M.; Wilson, C.;
Sadrud-Din, S. Carcinogenesis 2004, 25, 787. (e) Green,
M.; Wilson, C.; Newell, O.; Sadrud-Din, S.; Thomas, R.
Food Chem. Toxicol. 2005, 43, 1323.
Compound 3c: IR (film): 1716, 1643 cm–1. 1H NMR (CDCl3,
400 MHz): d = 2.62 (q, 4 H, J = 8.0 Hz), 2.78 (t, 4 H, J = 8.0
Hz), 3.62 (s, 4 H), 3.72 (s, 6 H), 6.98 (t, 2 H, J = 8.0 Hz),
7.19–7.32 (m, 10 H). 13C NMR (CDCl3, 100 MHz):
d = 31.32, 35.23, 35.38, 52.29, 126.49, 128.66, 128.77,
128.86, 141.01, 145.43, 167.13. MS (70 eV): m/z (%) = 470
(M+). Anal. Calcd for C26H30O4S2: C, 66.35; H, 6.42. Found:
C, 66.72; H, 6.48.
Synlett 2006, No. 15, 2492–2494 © Thieme Stuttgart · New York