Mannich-type adducts are valuable synthetic intermediates.
Cleavage of the 9-anthryl auxiliary from the ketone product 4b
was accomplished using an optimized oxidation process with
NaI/TMSCl, providing the free O–H compound 7 in 68%
yield.14 The relative and absolute stereochemistry of 7 was
determined as (2S,3R) in agreement with data previously
reported in the literature.15 Oxidation with m-CPBA generated
b-amino-a-hydroxyl ester 8 in 53% yield with 35% starting
material 4b recovered (eqn (2)).13,16
Compounds, John Wiley
(e) M. P. Doyle, R. Duffy, M. Ratnikov and L. Zhou, Chem.
Rev., 2010, 110, 704.
5 (a) X.-Y. Guan, L.-P. Yang and W.-H. Hu, Angew. Chem., Int.
Ed., 2010, 49, 2190; (b) W.-H. Hu, X.-F. Xu, J. Zhou, W.-J. Liu,
H.-X. Huang, J. Hu, L.-P. Yang and L.-Z. Gong, J. Am. Chem.
Soc., 2008, 130, 7782; (c) X. Zhang, H.-X. Huang, X. Guo,
X.-Y. Guan, L.-P. Yang and W.-H. Hu, Angew. Chem., Int. Ed.,
2008, 47, 6647; (d) S. Torssell, M. Kienle and P. Somfai, Angew.
Chem., Int. Ed., 2005, 44, 3096.
&
Sons, New York, 1998;
6 H. M. L. Davies and R. E. J. Beckwith, Chem. Rev., 2003, 103,
2861.
7 Highly enantioselective reactions with donor/acceptor carbenoids:
3+2 annulation: (a) Y.-J. Lian and H. M. L. Davies, J. Am. Chem.
Soc., 2010, 132, 440; Cyclopropanation: (b) J. L. Thompson and
H. M. L. Davies, J. Am. Chem. Soc., 2007, 129, 6090; (c) Y. Chen,
J. V. Ruppel and X. P. Zhang, J. Am. Chem. Soc., 2007, 129,
12074; (d) J. R. Denton and H. M. L. Davies, Org. Lett., 2009, 11,
787; XH-insertion: (e) S.-F. Zhu, C. Chen, Y. Cai and Q.-L. Zhou,
Angew. Chem., Int. Ed., 2008, 47, 932; (f) E. C. Lee and G. C. Fu,
J. Am. Chem. Soc., 2007, 129, 12066; (g) Z.-J. Li and H. M. L. Davies,
J. Am. Chem. Soc., 2010, 132, 396; (h) H. M. L. Davies,
C. Venkataramani, T. Hansen and D. W. Hopper, J. Am. Chem.
Soc., 2003, 125, 6462.
8 Selected enantioselective reactions from diazoacetophenone:
(a) M. Barberis, J. Prieto, S. Stiriba and P. Lahuerta, Org. Lett.,
2001, 3, 3317; (b) I. Nicolas, T. Roisnel, P. L. Maux and
G. Simonneaux, Tetrahedron Lett., 2009, 50, 5149;
(c) D. J. Wardrop and R. E. Forslund, Tetrahedron Lett., 2002,
43, 737; (d) J. R. Denton and H. M. L. Davies, Org. Lett., 2009, 11,
787; (e) P. Muller and P. Polleux, Helv. Chim. Acta, 1994, 77, 645;
(f) M. P. Doyle, M. Y. Eismont and Q.-L. Zhou, Russ. Chem. Bull.,
1997, 46, 955; (g) P. Muller and E. Maitrejean, Collect. Czech.
Chem. Commun., 1999, 64, 1807.
9 For cooperative catalysis to enhance reaction selectivity, see
reviews: (a) H. Yamamoto and K. Futatsugi, Angew. Chem., Int.
Ed., 2005, 44, 1924; (b) J. Wasilke, S. J. Obrey, R. T. Baker and
G. C. Bazan, Chem. Rev., 2005, 105, 1001; (c) Y. J. Park, J. Park
and C. Jun, Acc. Chem. Res., 2008, 41, 222; (d) Z.-H. Shao and
H.-B. Zhang, Chem. Soc. Rev., 2009, 38, 2745; (e) J. Zhou,
Chem.–Asian J., 2010, 5, 422; selected examples: (f) S. Mukherjee
and B. List, J. Am. Chem. Soc., 2007, 129, 11336; (g) T. Yang,
A. Ferrali, L. Campbell and D. J. Dixon, Chem. Commun., 2008,
2923; (h) Z.-Y. Han, H. Xiao, X.-H. Chen and L.-Z. Gong, J. Am.
Chem. Soc., 2009, 131, 9182; (i) B. M. Trost, E. J. McEachern and
F. D. Toste, J. Am. Chem. Soc., 1998, 120, 12702; (j) M. Terada
and Y. Toda, J. Am. Chem. Soc., 2009, 131, 6354.
10 Selected examples of recent progress using a-alkoxyl arylketone as
Mannich donor: (a) T. Yoshida, H. Morimoto, N. Kumagai,
S. Matsunaga and M. Shibasaki, Angew. Chem., Int. Ed., 2005,
44, 3470; (b) D. Enders, C. Grondal, M. Vrettou and G. Raabe,
Angew. Chem., Int. Ed., 2005, 44, 4079; (c) S. S. V. Ramasastry,
H.-L. Zhang, F. Tanaka and C. F. Barbas, III, J. Am. Chem.
Soc., 2007, 129, 288; (d) L.-L. Cheng, X. Han, H.-M.
Huang, M. W. Wonga and Y.-X. Lu, Chem. Commun., 2007,
4143.
(2)
In summary, we have developed a novel enantioselective
three-component Mannich-type reaction of a diazoacetophenone,
an alcohol, and an imine co-catalyzed by Rh2(OAc)4 and a
chiral Brønsted acid. Optically active b-amino-a-hydroxyl
ketones have been prepared with excellent diastereoselectivity
and enantioselectivity from three simple starting materials in
one reaction. Successful use of acceptor carbenoids derived
from diazoacetophenones in the coupling reaction indicates
that the cooperative catalysis strategy may be applicable
to other acceptor diazo compounds to achieve a high level
of control of the reaction selectivity. Research is currently
underway to further expand the reaction scope, as well as to
demonstrate the use of this methodology in the synthesis of
biologically active compounds.
We are grateful for financial support from National Natural
Science Foundation of China (Grant No. 20772033,
20932088), Shanghai Municipal Education Commission
(09ZZ45) and Science and Technology Commission of
Shanghai Municipality (09JC1404900, 10XD1401700).
Notes and references
1 For reviews: (a) D. Enders, C. Grondal and M. R. M. Huttl,
Angew. Chem., Int. Ed., 2007, 46, 1570; (b) K. C. Nicolaou,
D. J. Edmonds and P. G. Bulger, Angew. Chem., Int. Ed., 2006,
45, 7134; (c) B. A. Arndtsen, Chem.–Eur. J., 2009, 15, 302;
(d) A. Domling and I. Ugi, Angew. Chem., Int. Ed., 2000, 39,
3168; (e) B. B. Toure and D. G. Hall, Chem. Rev., 2009, 109, 4439;
(f) B. Ganem, Acc. Chem. Res., 2009, 42, 463; (g) A. Domling,
Chem. Rev., 2006, 106, 17; (h) J. Zhu and H. Bienayme,
Multicomponent reactions, Wiley-VCH, Weinheim, 2005.
2 Selected examples of recent progress in AMCRs: (a) N. J. A. Martin
and B. List, J. Am. Chem. Soc., 2006, 128, 13368; (b) H. Liu,
G. Dagousset, G. Masson, P. Retailleau and J. Zhu, J. Am. Chem.
Soc., 2009, 131, 4598; (c) S. Cabrera, J. Aleman, P. Bolze, S. Bertelsen
and K. A. Jøgensen, Angew. Chem., Int. Ed., 2008, 47, 121;
(d) R. I. Storer, D. E. Carrera, Y. Ni and D. W. C. MacMillan,
J. Am. Chem. Soc., 2006, 128, 84; (e) J. Jiang, J. Yu, X.-X. Sun,
Q.-Q. Rao and L.-Z. Gong, Angew. Chem., Int. Ed., 2008, 47, 2458;
(f) M. Yamanaka, I. Junji, K. Fuchibe and T. Akiyama, J. Am Chem.
Soc., 2007, 129, 6756.
11 (a) T. Hashimoto, N. Uchiyama and K. Maruoka, J. Am. Chem.
Soc., 2008, 130, 14380; (b) Z.-J. Lu, Y. Zhang and W. D. Wulff,
J. Am. Chem. Soc., 2007, 129, 7185; (c) T. Hashimoto,
N. Uchiyama and K. Maruoka, J. Am. Chem. Soc., 2008, 130,
14380; (d) M. P. Doyle, W.-H. Hu and D. J. Timmons, Org. Lett.,
2001, 3, 933.
12 (a) T. Hashimoto and K. Maruoka, Synthesis, 2008, 3703;
(b) T. Hashimoto and K. Maruoka, J. Am. Chem. Soc., 2007,
129, 10054.
13 See ESIw.
3 (a) D. J. Ramon and M. Yus, Angew. Chem., Int. Ed., 2005, 44,
1602; (b) S. Mukherjee, J. W. Yang, S. Hoffmann and B. List,
Chem. Rev., 2007, 107, 5471; (c) D. Enders, M. R. M. Huttl,
C. Grondal and G. Raabe, Nature, 2006, 441, 861; (d) A. Dondoni
and A. Massi, Acc. Chem. Res., 2006, 39, 451.
4 For review: (a) H. M. L. Davies and J. R. Manning, Nature, 2008,
451, 417; (b) A.-H. Li, L.-X. Dai and V. K. Aggarwal, Chem. Rev.,
1997, 97, 2341; (c) A. Padwa and M. D. Weingarten, Chem. Rev.,
1996, 96, 223; (d) M. P. Doyle, M. A. McKervey and T. Ye,
Modern Catalytic Methods for Organic Synthesis with Diazo
14 (a) A. O. George, C. N. Subhash, G. B. G. Balaram and
M. Ripudaman, J. Org. Chem., 1979, 44, 1247; (b) E. J. Michael
and A. L. Mark, J. Org. Chem., 1977, 42, 3761.
15 Lit. [a]2D5 = ꢀ9.581 (c = 0.748, CHCl3, 99% ee), see: B. M. Trost
and L. R. Terrell, J. Am. Chem. Soc., 2003, 125, 338.
16 (a) S. Matsunaga, T. Yoshida, H. Morimoto, N. Kumagai and
M. Shibasaki, J. Am. Chem. Soc., 2004, 126, 8777;
(b) M. B. Andrus, E. J. Hicken, J. C. Stephens and D. K. Bedke,
J. Org. Chem., 2005, 70, 9470.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 797–799 799