Article
Journal of Medicinal Chemistry, 2011, Vol. 54, No. 4 1069
acknowledges support from the National Institutes of Health
(HL62198) and the Egyptian Ministry of Higher Education
through a Joint Supervision Channel Program (M.E.S.).
(22) Buyukafsar, K.; Nelli, S.; Martin, W. Formation of nitric oxide
from nitroxyl anion: role of quinones and ferricytochrome c. Br.
J. Pharmacol. 2001, 132 (1), 165–172.
(23) Ellis, A.; Li, C. G.; Rand, M. J. Differential actions of L-cysteine on
responses to nitric oxide, nitroxyl anions and EDRF in the rat
aorta. Br. J. Pharmacol. 2000, 129 (2), 315–322.
Supporting Information Available: 1H and 13C NMR data for
compound 2, along with UV-vis and GC-MS kinetic decom-
position data for compounds 1-3. This material is available free
(24) Pino, R. Z.; Feelisch, M. Bioassay Discrimination between Nitric-
Oxide (NO and Nitroxyl (NO-) Using L-Cysteine. Biochem.
3
Biophys. Res. Commun. 1994, 201 (1), 54–62.
(25) Fukuto, J. M.; Hobbs, A. J.; Ignarro, L. J. Conversion of
Nitroxyl (HNO) to Nitric-Oxide (NO) in Biological-Systems;
the Role of Physiological Oxidants and Relevance to the Biolo-
gical-Activity of HNO. Biochem. Biophys. Res. Commun. 1993,
196 (2), 707–713.
(26) Wink, D. A.; Feelisch, M.; Fukuto, J.; Chistodoulou, D.; Jourd’heuil,
D.; Grisham, M. B.; Vodovotz, Y.; Cook, J. A.; Krishna, M.;
DeGraff, W. G.; Kim, S.; Gamson, J.; Mitchell, J. B. The cyto-
toxicity of nitroxyl: possible implications for the pathophysiologi-
cal role of NO. Arch. Biochem. Biophys. 1998, 351 (1), 66–74.
(27) DeMaster, E. G.; Redfern, B.; Nagasawa, H. T. Mechanisms
of inhibition of aldehyde dehydrogenase by nitroxyl, the active
metabolite of the alcohol deterrent agent cyanamide. Biochem.
Pharmacol. 1998, 55 (12), 2007–2015.
References
(1) DuMond, J. F., King, S. B. The Chemistry of Nitroxyl (HNO)
Releasing Compounds. Antioxid. Redox Signaling 2010.
(2) Miranda, K. M. The chemistry of nitroxyl (HNO) and implications
in biology. Coord. Chem. Rev. 2005, 249 (3-4), 433–455.
(3) Fukuto, J. M.; Bianco, C. L.; Chavez, T. A. Nitroxyl (HNO)
signaling. Free Radical Biol. Med. 2009, 47 (9), 1318–1324.
(4) Irvine, J. C.; Ritchie, R. H.; Favaloro, J. L.; Andrews, K. L.;
Widdop, R. E.; Kemp-Harper, B. K. Nitroxyl (HNO): the Cinderella
of the nitric oxide story. Trends Pharmacol. Sci. 2008, 29 (12),
601–608.
(5) Paolocci, N.; Jackson, M. I.; Lopez, B. E.; Miranda, K.; Tocchetti,
C. G.; Wink, D. A.; Hobbs, A. J.; Fukuto, J. M. The pharmacology
of nitroxyl (HNO) and its therapeutic potential: not just the Janus
face of NO. Pharmacol. Ther. 2007, 113 (2), 442–458.
(6) Bonner, F. T.; Hughes, M. N. The Aqueous Solution Chemistry of
Nitrogen in Low Positive Oxidation States. Comments Inorg.
Chem. 1988, 7, 215–234.
(7) Bartberger, M. D.; Fukuto, J. M.; Houk, K. N. On the acidity and
reactivity of HNO in aqueous solution and biological systems.
Proc. Natl. Acad. Sci. U.S.A. 2001, 98 (5), 2194–2198.
(28) Nagasawa, H. T.; Demaster, E. G.; Redfern, B.; Shirota, F. N.;
Goon, J. W. Evidence for Nitroxyl in the Catalase-Mediated
Bioactivation of the Alcohol Deterrent Agent Cyanamide. J. Med.
Chem. 1990, 33 (12), 3120–3122.
(29) Tocchetti, C. G.; Wang, W.; Froehlich, J. P.; Huke, S.; Aon, M. A.;
Wilson, G. M.; Di Benedetto, G.; O’Rourke, B.; Gao, W. D.; Wink,
D. A.; Toscano, J. P.; Zaccolo, M.; Bers, D. M.; Valdivia, H. H.;
Cheng, H. P.; Kass, D. A.; Paolocci, N. Nitroxyl improves cellular
heart function by directly enhancing cardiac sarcoplasmic reticu-
lum Ca2þ cycling. Circ. Res. 2007, 100 (1), 96–104.
(8) Miranda, K. M.; Paolocci, N.; Katori, T.; Thomas, D. D.; Ford, E.;
Bartberger, M. D.; Espey, M. G.; Kass, D. A.; Feelisch, M.;
Fukuto, J. M.; Wink, D. A. A biochemical rationale for the discrete
behavior of nitroxyl and nitric oxide in the cardiovascular system.
Proc. Natl. Acad. Sci. U.S.A. 2003, 100 (16), 9196–9201.
(9) King, S. B.; Nagasawa, H. T. Chemical approaches toward gen-
eration of nitroxyl. In Methods in Enzymology, Part C: Biological
and Antioxidant Activities; Packer, L., Ed.; Academic Press: New
York, 1999; Nitric Oxide , pp 211-220
(30) Dai, T. Y.; Tian, Y.; Tocchetti, C. G.; Katori, T.; Murphy, A. M.;
Kass, D. A.; Paolocci, N.; Gao, W. D. Nitroxyl increases force
development in rat cardiac muscle. J. Physiol. (Oxford, U.K.) 2007,
580 (3), 951–960.
(31) Paolocci, N.; Saavedra, W. F.; Miranda, K. M.; Martignani, C.;
Isoda, T.; Hare, J. M.; Espey, M. G.; Fukuto, J. M.; Feelisch, M.;
Wink, D. A.; Kass, D. A. Nitroxyl anion exerts redox-sensitive
positive cardiac inotropy in vivo by calcitonin gene-related peptide
signaling. Proc. Natl. Acad. Sci. U.S.A. 2001, 98 (18), 10463–10468.
(32) Shiva, S.; Crawford, J. H.; Ramachandran, A.; Ceaser, E. K.;
Hillson, T.; Brookes, P. S.; Patel, R. P.; Darley-Usmar, V. M.
Mechanisms of the interaction of nitroxyl with mitochondria.
Biochem. J. 2004, 379 (Pt 2), 359–366.
(33) Miranda, K. M.; Katori, T.; de Holding, C. L. T.; Thomas, L.;
Ridnour, L. A.; MeLendon, W. J.; Cologna, S. M.; Dutton, A. S.;
Champion, H. C.; Mancardi, D.; Tocchetti, C. G.; Saavedra, J. E.;
Keefer, L. K.; Houk, K. N.; Fukuto, J. M.; Kass, D. A.; Paolocci,
N.; Wink, D. A. Comparison of the NO and HNO donating
properties of diazeniumdiolates: primary amine adducts release
HNO in vivo. J. Med. Chem. 2005, 48 (26), 8220–8228.
(34) Gladwin, M. T.; Raat, N. J. H.; Shiva, S.; Dezfulian, C.; Hogg, N.;
Kim-Shapiro, D. B.; Patel, R. P. Nitrite as a vascular endocrine
nitric oxide reservoir that contributes to hypoxic signaling, cyto-
protection, and vasodilation. Am. J. Physiol.: Heart Circ. Physiol.
2006, 291 (5), H2026–H2035.
(10) Miranda, K. M.; Nagasawa, H. T.; Toscano, J. P. Donors of HNO.
Curr. Top. Med. Chem. 2005, 5 (7), 647–664.
(11) Wong, P. S. Y.; Hyun, J.; Fukuto, J. M.; Shirota, F. N.; DeMaster,
E. G.; Shoeman, D. W.; Nagasawa, H. T. Reaction between
S-nitrosothiols and thiols: generation of nitroxyl (HNO) and
subsequent chemistry. Biochemistry 1998, 37 (16), 5362–5371.
(12) Spencer, N. Y.; Patel, N. K.; Keszler, A.; Hogg, N. Oxidation
and nitrosylation of oxyhemoglobin by S-nitrosoglutathione via
nitroxyl anion. Free Radical Biol. Med. 2003, 35 (11), 1515–1526.
(13) Schmidt, H. H. H. W.; Hofmann, H.; Schindler, U.; Shutenko,
Z. S.; Cunningham, D. D.; Feelisch, M. No NO from NO
3
synthase. Proc. Natl. Acad. Sci. U.S.A. 1996, 93 (25), 14492–
14497.
(14) Arnelle, D. R.; Stamler, J. S. NOþ, NO , and NO- Donation by
3
S-Nitrosothiols;Implications for Regulation of Physiological
Functions by S-Nitrosylation and Acceleration of Disulfide
Formation. Arch. Biochem. Biophys. 1995, 318 (2), 279–285.
(15) Wei, C. C.; Wang, Z. Q.; Hemann, C.; Hille, R.; Stuehr, D. J. A
tetrahydrobiopterin radical forms and then becomes reduced dur-
ing N-omega-hydroxyarginine oxidation by nitric-oxide synthase.
J. Biol. Chem. 2003, 278 (47), 46668–46673.
(35) Gladwin, M. T.; Schechter, A. N.; Kim-Shapiro, D. B.; Patel, R. P.;
Hogg, N.; Shiva, S.; Cannon, R. O.; Kelm, M.; Wink, D. A.; Espey,
M. G.; Oldfield, E. H.; Pluta, R. M.; Freeman, B. A.; Lancaster,
J. R.; Feelisch, M.; Lundberg, J. O. The emerging biology of the
nitrite anion. Nature Chem. Biol. 2005, 1 (6), 308–314.
(16) Lopez, B. E.; Shinyashiki, M.; Han, T. H.; Fukuto, J. M. Anti-
oxidant actions of nitroxyl (HNO). Free Radical Biol. Med. 2007,
42 (4), 482–491.
(36) Sha, X.; Isbell, T. S.; Patel, R. P.; Day, C. S.; King, S. B. Hydrolysis
of acyloxy nitroso compounds yields nitroxyl (HNO). J. Am.
Chem. Soc. 2006, 128 (30), 9687–9692.
(17) Irvine, J. C.; Favaloro, J. L.; Widdop, R. E.; Kemp-Harper, B. K.
Nitroxyl anion donor, Angeli’s salt, does not develop tolerance in
rat isolated aortae. Hypertension 2007, 49 (4), 885–892.
(18) Favaloro, J. L.; Kemp-Harper, B. K. The nitroxyl anion (HNO) is
a potent dilator of rat coronary vasculature. Cardiovasc. Res. 2007,
73 (3), 587–596.
(37) He, X. J.; Azarov, I.; Jeffers, A.; Presley, T.; Richardson, J.; King,
S. B.; Gladwin, M. T.; Kim-Shapiro, D. B. The potential of
Angeli’s salt to decrease nitric oxide scavenging by plasma hemo-
globin. Free Radical Biol. Med. 2008, 44 (7), 1420–1432.
(38) Isbell, D. C.; Voros, S.; Yang, Z.; DiMaria, J. M.; Berr, S. S.;
French, B. A.; Epstein, F. H.; Bishop, S. P.; Wang, H.; Roy, R. J.;
Kemp, B. A.; Matsubara, H.; Carey, R. M.; Kramer, C. M.
Interaction between bradykinin subtype 2 and angiotensin II type
2 receptors during post-MI left ventricular remodeling. Am.
J. Physiol.: Heart Circ. Physiol. 2007, 293 (6), H3372–3378.
(39) Calvet, G.; Dussaussois, M.; Blanchard, N.; Kouklovsky, C. Lewis
acid-promoted hetero Diels-Alder cycloaddition of R-acetoxyni-
troso dienophiles. Org. Lett. 2004, 6 (14), 2449–2451.
(19) Irvine, J. C.; Favaloro, J. L.; Kemp-Harper, B. K. NO- activates
soluble guanylate cyclase and K-v channels to vasodilate resistance
arteries. Hypertension 2003, 41 (6), 1301–1307.
(20) Crawford, J. H.; White, C. R.; Patel, R. P. Vasoactivity of
S-nitrosohemoglobin: role of oxygen, heme, and NO oxidation
states. Blood 2003, 101 (11), 4408–4415.
(21) Nelli, S.; McIntosh, L.; Martin, W. Role of copper ions and
cytochrome P450 in the vasodilator actions of the nitroxyl anion
generator, Angeli’s salt, on rat aorta. Eur. J. Pharmacol. 2001, 412
(3), 281–289.
(40) Espey, M. G.; Miranda, K. M.; Thomas, D. D.; Wink, D. A.
Ingress and reactive chemistry of nitroxyl-derived species within
human cells. Free Radical Biol. Med. 2002, 33 (6), 827–834.