Y. J. Lee et al. / Tetrahedron Letters 52 (2011) 418–421
421
14. In 1H NMR of compound 8, observed signals with small coupling constants
(JH1–H2 = 2, JH2–H3 and JH3–H4 = 3, JH4–H5 = ꢀ0) suggested that the predominant
conformation of 8 is 1C4. For general disscussion about the conformation of
a-
D-idose; see: Grindley, T. B. In Fraser-Reid, B., Tatsuta, K., Thiem, J., Eds., second
ed.; Glycoscience, Chemistry and Chemical Biology; Springer: Berlin, 2008; Vol.
1, pp 3–55.
References and notes
15. Gordon, D. M.; Whitesides, G. M. J. Org. Chem. 1993, 58, 7937–7938.
16. Loh, T.-P.; Zhou, J.-R. Tetrahedron Lett. 1999, 40, 9115–9118.
17. (a) Chandler, M.; Bamford, M. J.; Conroy, R.; Lamont, B.; Patel, B.; Patel, V. K.;
Steeples, I. P.; Storer, R.; Weir, N. G.; Wright, M.; Williamson, C. J. Chem. Soc.,
Perkin Trans. 1 1995, 1173–1180; (b) Kiefel, M. J.; Wilson, J. C.; Bennett, S.;
Gredley, M.; von Itzstein, M. Bioorg. Med. Chem. 2000, 8, 657–664.
18. Gao, J.; Härter, R.; Gordon, D. M.; Whitesides, G. M. J. Org. Chem. 1994, 59.
3741–3715.
1. Wacker, M.; Linton, D.; Hitchen, P. G.; Nita-Lazar, M.; Haslam, S. M.; North, S. J.;
Panico, M.; Morris, H. R.; Dell, A.; Wren, B. W.; Aebi, M. Science 2002, 298,
1790–1793.
2. Thibault, P.; Logan, S. M.; Kelly, J. F.; Brisson, J.-R.; Ewing, C. P.; Trust, T. J.;
Guerry, P. J. Biol. Chem. 2001, 276, 34862–34870.
3. Schirm, M.; Soo, E. C.; Aubry, A. J.; Austin, J.; Thibault, P.; Logan, S. M. Mol.
Microbiol. 2003, 48, 1579–1592.
4. Staaf, M.; Weintraub, A.; Widmalm, G. Eur. J. Biochem. 1999, 263, 656–661.
5. Castric, P.; Cassels, F. J.; Carlson, R. W. J. Biol. Chem. 2001, 276, 26479–26485.
6. Young, N. M.; Brisson, J.-R.; Kelly, J.; Watson, D. C.; Tessier, L.; Lanthier, P. H.;
Jarrel, H. C.; Cadotte, N.; St. Michael, F.; Aberg, E.; Szymanski, C. M. J. Biol. Chem.
2002, 277, 42530–42539.
7. (a) Medgeyes, A.; Farkas, E.; Lipták, A.; Pozsgay, V. Tetrahedron 1997, 53, 4159–
4178; (b) Hermans, J. P. G.; Elie, C. J. J.; van der Marel, G. A.; van Boom, J. H. J.
Carbohydr. Chem. 1987, 6, 451–462.
19. Attempted saponification of 16 in aqueous ammonia gave an amide derivative
of 17. ESI-TOF HRMS: [M+Na]+ calcd for C13H23N3NaO7, 356.1419, found
356.1434.
20. (a) Marra, A.; Sinaÿ, P. Carbohydr. Res. 1989, 187, 35–42; (b) Hasegawa, A.; Ohki,
H.; Nagahama, T.; Ishida, H.; Kiso, M. Carbohydr. Res. 1991, 212, 277–281.
21. Marra, A.; Sinaÿ, P. Carbohydr. Res. 1989, 190, 317–322.
22. For use of phosphite as leaving group of sialyl donor, see: (a) Martin, T. J.;
Schmidt, R. R. Tetrahedron Lett. 1992, 33, 6123–6126; (b) Kondo, H.; Ichikawa,
Y.; Wong, C.-H. J. Am. Chem. Soc. 1992, 114, 8748–8750.
8. (a) Liav, A.; Sharon, N. Carbohydr. Res. 1973, 30, 109–126; (b) Liu, F.; Tanner, M.
E. J. Biol. Chem. 2006, 281, 20902–20909.
23. NMR data of compound 21a:
1H NMR (400 MHz, CDCl3) d 1.03 (t, J = 7.3 Hz, 3H,
9. (a) Chou, W. K.; Dick, S.; Wakarchuk, W. W.; Tanner, M. E. J. Biol. Chem. 2005,
280, 35922–35928; (b) Schoenhofen, I. C.; Lunin, V. V.; Julien, J. P.; Li, Y.;
Ajamian, E.; Matte, A.; Gygler, M.; Brisson, J. R.; Aubry, A.; Logan, S. M.; Bhatia,
S.; Wakarchuk, W. W.; Young, N. M. J. Biol. Chem. 2006, 281, 8907–8916; (c)
Schoenhofen, I. C.; McNally, D. J.; Brisson, J.-R.; Logan, S. M. Glycobiology 2006,
16, 8C–14C; (d) Schoenhofen, I. C.; McNally, D. J.; Vinogradov, E.; Whitfield, D.;
Young, N. M.; Dick, S.; Wakarchuk, W. W.; Brisson, J.-R.; Logan, S. M. J. Biol.
Chem. 2006, 281, 723–732; (e) Ishiyama, N.; Creuzenet, C.; Miller, W. L.;
Demendi, M.; Anderson, E. M.; Harauz, G.; Lam, J. S.; Berghuis, A. M. J. Biol.
Chem. 2006, 281, 24489–24495.
10. Tsvetkov, Y. E.; Shashkov, A. S.; Knirel, Y. A.; Zahringer, U. Carbohydr. Res. 2001,
335, 221–243.
11. For the chemoenzymatic azido-Pse mdification of flagella, see; Liu, F.; Aubry, A. J.;
Schoenhofen, I. C.; Logan, S. M.; Tanner, M. E. ChemBioChem 2009, 10, 1317–1320.
12. Sharma, M.; Bernacki, R. J.; Paul, B.; Korytnyk, W. Carbohydr. Res. 1990, 198,
205–221.
OCH2CH3), 1.25 (d, J = 6.9 Hz, 3H, H-9), 1.81 (t, J = 13.1 Hz, 1H, H-3a), 1.96 (s,
3H, Ac), 1.97 (s, 3H, Ac), 1.99 (s, 3H, Ac), 2.03 (s, 3H, Ac), 2.16 (dd, J = 13.1,
5.0 Hz, 1H, H-3e), 3.45 (s, 3H, OCH3), 3.71 (d, J = 3.2 Hz, 2H, H-6Glc), 3.82–3.90
(m, 1H, OCHHCH3), 3.98–4.04 (m, 1H, OCHHCH3), 4.07 (dd, J = 10.5, 1.4 Hz, 1H,
H-6), 4.24 (dt, J = 10.6, 3.2 Hz, 1H, H-5Glc), 4.55–4.61 (m, 2H, H-5, H-7), 5.14–
5.26 (m, 4H, H-4, H-8, H-1Glc, H-2Glc), 5.48 (d, J = 11.0 Hz, 1H, NH), 5.72 (t,
J = 10.1 Hz, 1H, H-4Glc), 5.87 (d, J = 9.2 Hz, 1H, NH), 6.12 (t, J = 10.1 Hz, 1H, H-
3Glc), 7.25–7.56 (m, 9H, ArH), 7.90–7.99 (m, 6H, ArH); 13C NMR (100 MHz,
CDCl3) d 14.0, 14.6, 21.1, 21.4, 23.4, 23.5, 32.2, 45.5, 50.5, 55.9, 62.1, 62.3, 67.2,
68.0, 68.8, 70.2, 70.3, 70.7, 72.4, 97.3, 98.8, 128.4, 128.6, 129.1, 129.3, 129.9,
130.1, 133.2, 133.4, 133.5, 164.9, 165.9, 166.0, 166.7, 170.0, 170.4, 170.6, 171.1.
The crosspeak between C2 and H3a could not be observed by HMBC
experiment, which suggested the formation of b-isomer. JH3a–H4 (ꢀ13 Hz)
indicated that 21
stereochemistry.
a
has chair conformation with 4-O-equatorial
13. (a) Molander, G. A. Org. React. 1994, 46, 211–367; (b) Hsu, D.-S.; Matsumoto, T.;
Suzuki, K. Synlett 2005, 801–804.