Inorganic Chemistry
Article
(20) Enemark, J. H.; Feltham, R. D. Principles of structure, bonding,
and reactivity for metal nitrosyl complexes. Coord. Chem. Rev. 1974,
13, 339−406.
REFERENCES
■
(1) Bredt, D. S.; Snyder, S. H. Nitric Oxide: A Physiologic
Messenger Molecule. Annu. Rev. Biochem. 1994, 63, 175−195.
(2) Vincent, J.-L.; Zhang, H.; Szabo, C.; Preiser, J.-C. Effects of
Nitric Oxide in Septic Shock. Am. J. Respir. Crit. Care Med. 2000, 161,
1781−1785.
(3) Lehnert, N.; Berto, T. C.; Galinato, M. G. I.; Goodrich, L. E. In
Handbook of Porphyrin Science; World Scientific: 2010; pp 1−247.
(4) Daiber, A.; Shoun, H.; Ullrich, V. Nitric oxide reductase
(P450nor) from Fusarium oxysporum. J. Inorg. Biochem. 2005, 99,
185−193.
(5) Shimizu, H.; Obayashi, E.; Gomi, Y.; Arakawa, H.; Park, S. Y.;
Nakamura, H.; Adachi, S.-i.; Shoun, H.; Shiro, Y. Proton delivery in
NO reduction by fungal nitric-oxide reductase: Cryogenic crystallog-
raphy, spectroscopy, and kinetics of ferric-NO complexes of wild-type
and mutant enzymes. J. Biol. Chem. 2000, 275, 4816−4826.
(6) US EPA Overview of Greenhouse Gases [Online Early Access];
(21) Paulat, F.; Lehnert, N. Electronic Structure of Ferric Heme
Nitrosyl Complexes with Thiolate Coordination. Inorg. Chem. 2007,
46, 1547−1549.
(22) Praneeth, V. K. K.; Paulat, F.; Berto, T. C.; George, S. D.;
̈
Nather, C.; Sulok, C. D.; Lehnert, N. Electronic Structure of Six-
Coordinate Iron(III)-Porphyrin NO Adducts: The Elusive Iron(III)-
NO(radical) State and Its Influence on the Properties of These
Complexes. J. Am. Chem. Soc. 2008, 130, 15288−15303.
(23) Soldatova, A. V.; Ibrahim, M.; Olson, J. S.; Czernuszewicz, R.
S.; Spiro, T. G. New Light on NO Bonding in Fe(III) Heme Proteins
from Resonance Raman Spectroscopy and DFT Modeling. J. Am.
Chem. Soc. 2010, 132, 4614−4625.
(24) McQuarters, A. B.; Kampf, J. W.; Alp, E. E.; Hu, M.; Zhao, J.;
Lehnert, N. Ferric Heme-Nitrosyl Complexes: Kinetically Robust or
Unstable Intermediates? Inorg. Chem. 2017, 56, 10513−10528.
(25) Obayashi, E.; Tsukamoto, K.; Adachi, S. i.; Takahashi, S.;
Nomura, M.; Iizuka, T.; Shoun, H.; Shiro, Y. Unique Binding of Nitric
Oxide to Ferric Nitric Oxide Reductase from Fusarium oxysporum
Elucidated with Infrared, Resonance Raman, and X-ray Absorption
Spectroscopies. J. Am. Chem. Soc. 1997, 119, 7807−7816.
(26) Hu, S.; Kincaid, J. R. Resonance Raman characterization of
nitric oxide adducts of cytochrome P450cam: the effect of substrate
structure on the iron-ligand vibrations. J. Am. Chem. Soc. 1991, 113,
2843−2850.
(27) Hu, S.; Kincaid, J. R. Heme active-site structural character-
ization of chloroperoxidase by resonance Raman spectroscopy. J. Biol.
Chem. 1993, 268, 6189−6193.
(28) Couture, M.; Adak, S.; Stuehr, D. J.; Rousseau, D. L. Regulation
of the Properties of the Heme-NO Complexes in Nitric-oxide
Synthase by Hydrogen Bonding to the Proximal Cysteine. J. Biol.
Chem. 2001, 276, 38280−38288.
(29) Li, D.; Stuehr, D. J.; Yeh, S. R.; Rousseau, D. L. Heme
Distortion Modulated by Ligand-Protein Interactions in Inducible
Nitric-oxide Synthase. J. Biol. Chem. 2004, 279, 26489−26499.
(30) Xu, N.; Powell, D. R.; Cheng, L.; Richter-Addo, G. B. The first
structurally characterized nitrosyl heme thiolate model complex.
Chem. Commun. 2006, 2030−2032.
(31) Goodrich, L. E.; Paulat, F.; Praneeth, V. K. K.; Lehnert, N.
Electronic Structure of Heme-Nitrosyls and Its Significance for Nitric
Oxide Reactivity, Sensing, Transport, and Toxicity in Biological
Systems. Inorg. Chem. 2010, 49, 6293−6316.
(32) Suzuki, N.; Higuchi, T.; Urano, Y.; Kikuchi, K.; Uchida, T.;
Mukai, M.; Kitagawa, T.; Nagano, T. First Synthetic NO-Heme-
Thiolate Complex Relevant to Nitric Oxide Synthase and
Cytochrome P450nor. J. Am. Chem. Soc. 2000, 122, 12059−12060.
(33) Adler, A. D.; Longo, F. R.; Kampas, F.; Kim, J. On the
preparation of metalloporphyrins. J. Inorg. Nucl. Chem. 1970, 32,
2443−2445.
(34) Tsai, R.; Yu, C. A.; Gunsalus, I. C.; Peisach, J.; Blumberg, W.;
Orme-Johnson, W. H.; Beinert, H. Spin-State Changes in Cytochrome
P-450cam on Binding of Specific Substrates. Proc. Natl. Acad. Sci. U. S.
A. 1970, 66, 1157−1163.
(7) Riplinger, C.; Bill, E.; Daiber, A.; Ullrich, V.; Shoun, H.; Neese,
F. New Insights into the Nature of Observable Reaction Intermediates
in Cytochrome P450 NO Reductase by Using a Combination of
Spectroscopy and Quantum Mechanics/Molecular Mechanics Calcu-
lations. Chem. - Eur. J. 2014, 20, 1602−1614.
(8) Higgins, S. A.; Welsh, A.; Orellana, L. H.; Konstantinidis, K. T.;
Chee-Sanford, J. C.; Sanford, R. A.; Schadt, C. W.; Loffler, F. E.
̈
Detection and Diversity of Fungal Nitric Oxide Reductase Genes
(p450nor) in Agricultural Soils. Appl. Environ. Microbiol. 2016, 82,
2919−2928.
(9) Novinscak, A.; Goyer, C.; Zebarth, B. J.; Burton, D. L.;
Chantigny, M. H.; Filion, M. Novel P450nor Gene Detection Assay
Used To Characterize the Prevalence and Diversity of Soil Fungal
Denitrifiers. Appl. Environ. Microbiol. 2016, 82, 4560−4569.
(10) Chen, H.; Shi, W. Opening up the N2O-producing fungal
community in an agricultural soil with a cytochrome p450nor-based
primer tool. Applied Soil Ecology 2017, 119, 392−395.
(11) McQuarters, A. B.; Wolf, M. W.; Hunt, A. P.; Lehnert, N.
1958−2014: After 56 Years of Research, Cytochrome P450 Reactivity
Is Finally Explained. Angew. Chem., Int. Ed. 2014, 53, 4750−4752.
(12) Denisov, I. G.; Makris, T. M.; Sligar, S. G.; Schlichting, I.
Structure and Chemistry of Cytochrome P450. Chem. Rev. 2005, 105,
2253−2278.
(13) Krest, C. M.; Silakov, A.; Rittle, J.; Yosca, T. H.; Onderko, E. L.;
Calixto, J. C.; Green, M. T. Significantly shorter Fe−S bond in
cytochrome P450-I is consistent with greater reactivity relative to
chloroperoxidase. Nat. Chem. 2015, 7, 696.
(14) Galinato, M. G. I.; Spolitak, T.; Ballou, D. P.; Lehnert, N.
Elucidating the Role of the Proximal Cysteine Hydrogen-Bonding
Network in Ferric Cytochrome P450cam and Corresponding Mutants
Using Magnetic Circular Dichroism Spectroscopy. Biochemistry 2011,
50, 1053−1069.
(15) Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Heme-
Containing Oxygenases. Chem. Rev. 1996, 96, 2841−2888.
(16) Yosca, T. H.; Rittle, J.; Krest, C. M.; Onderko, E. L.; Silakov, A.;
Calixto, J. C.; Behan, R. K.; Green, M. T. Iron(IV)hydroxide pKa and
the Role of Thiolate Ligation in C−H Bond Activation by
Cytochrome P450. Science 2013, 342, 825−829.
(17) Shiro, Y.; Fujii, M.; Iizuka, T.; Adachi, S. i.; Tsukamoto, K.;
Nakahara, K.; Shoun, H. Spectroscopic and Kinetic Studies on
Reaction of Cytochrome P450nor with Nitric Oxide: Implication for
its Nitric Oxide Reduction Mechanism. J. Biol. Chem. 1995, 270,
1617−1623.
(18) Oshima, R.; Fushinobu, S.; Su, F.; Zhang, L.; Takaya, N.;
Shoun, H. Structural Evidence for Direct Hydride Transfer from
NADH to Cytochrome P450nor. J. Mol. Biol. 2004, 342, 207−217.
(19) Lehnert, N.; Praneeth, V. K. K.; Paulat, F. Electronic structure
of iron(II)−porphyrin nitroxyl complexes: Molecular mechanism of
fungal nitric oxide reductase (P450nor). J. Comput. Chem. 2006, 27,
1338−1351.
(35) Tang, S. C.; Koch, S.; Papaefthymiou, G. C.; Foner, S.; Frankel,
R. B.; Ibers, J. A.; Holm, R. H. Axial ligation modes in iron(III)
porphyrins. Models for the oxidized reaction states of cytochrome P-
450 enzymes and the molecular structure of iron(III) protoporphyrin
IX dimethyl ester p-nitrobenzenethiolate. J. Am. Chem. Soc. 1976, 98,
2414−2434.
(36) Li, J.; Peng, Q.; Oliver, A. G.; Alp, E. E.; Hu, M. Y.; Zhao, J.;
Sage, J. T.; Scheidt, W. R. Comprehensive Fe−Ligand Vibration
Identification in {FeNO}6 Hemes. J. Am. Chem. Soc. 2014, 136,
18100−18110.
(37) Kobayashi, H.; Higuchi, T.; Kaizu, Y.; Osada, H.; Aoki, M.
Electronic Spectra of Tetraphenylporphinatoiron(III) Methoxide.
Bull. Chem. Soc. Jpn. 1975, 48, 3137−3141.
O
Inorg. Chem. XXXX, XXX, XXX−XXX