from College of Life Sciences, Nankai University (B08011)
for their financial support.
Notes and references
1 P. M. Martensen and J. Justesen, Biotechniques, 2001,
30, 782.
2 M. O. M. Piepenbrock, G. O. Lloyd, N. Clarke and J. W. Steed,
Chem. Rev., 2010, 110, 1960; L. A. Estroff and A. D. Hamilton,
Chem. Rev., 2004, 104, 1201; R. J. Williams, A. M.
Smith, R. Collins, N. Hodson, A. K. Das and R. V. Ulijn, Nat.
Nanotechnol., 2009, 4, 19; A. Brizard, M. Stuart, K. van Bommel,
A. Friggeri, M. de Jong and J. van Esch, Angew. Chem., Int. Ed.,
2008, 47, 2063; J. P. Jung, J. Z. Gasiorowski and J. H.
Collier, Biopolymers, 2010, 94, 49; S. Debnath, A. Shome,
D. Das and P. K. Das, J. Phys. Chem. B, 2010, 114,
4407; J. Chen and A. J. McNeil, J. Am. Chem. Soc., 2008, 130,
16496; K. N. King and A. J. McNeil, Chem. Commun., 2010,
46, 3511.
3 A. R. Hirst, B. Escuder, J. F. Miravet and D. K. Smith, Angew.
Chem., Int. Ed., 2008, 47, 8002; D. Koda, T. Maruyama,
N. Minakuchi, K. Nakashima and M. Goto, Chem. Commun.,
2010, 46, 979; Y. Cao, L. M. Tang, Y. J. Wang, B. Y. Zhang and
L. K. Jia, Chem. Lett., 2008, 37, 554; C. J. Bowerman and
B. L. Nilsson, J. Am. Chem. Soc., 2010, 132, 9526; G. Cheng,
V. Castelletto, C. M. Moulton, G. E. Newby and I. W. Hamley,
Langmuir, 2010, 26, 4990; D. J. Adams, M. F. Butler, W. J. Frith,
M. Kirkland, L. Mullen and P. Sanderson, Soft Matter, 2009, 5,
1856; S. Dutta, A. Shome, S. Debnath and P. K. Das, Soft Matter,
2009, 5, 1607.
4 E. Genove, C. Shen, S. G. Zhang and C. E. Semino, Biomaterials,
2005, 26, 3341; M. Zhou, A. M. Smith, A. K. Das, N. W. Hodson,
R. F. Collins, R. V. Ulijn and J. E. Gough, Biomaterials, 2009, 30,
2523.
5 S. Kiyonaka, K. Sada, I. Yoshimura, S. Shinkai, N. Kato and
I. Hamachi, Nat. Mater., 2004, 3, 58; A. Wada, S. Tamaru,
M. Ikeda and I. Hamachi, J. Am. Chem. Soc., 2009, 131, 5321.
6 S. Koutsopoulos, L. D. Unsworth, Y. Nagaia and S. G. Zhang,
Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 4623.
Fig. 5 (A) The crystal structure of Nap-GFF obtained from ethanol
and (B) schematic molecular arrangement of 1 in self-assembled
structures.
The crystal structure of Nap-GFF (Fig. 5) was obtained to
understand the molecular packing of 1 in the nanostructures.
Unlike the Nap-FF, in which the naphthalene group inter-
acted with the phenyl ring of its own phenylalanine (F) and
two Nap-FF molecules formed a dimer with a ‘X’ shape,15 the
naphthalene group on Nap-GFF was far away from the phenyl
ring of its own phenylalanine, thus facilitating the formation
of the dimer with a ‘//’ shape. This observation helped us to
understand the super-gelation ability of the derivatives of
Nap-GFF.16 The ‘//’ shape of the dimer and the four water
molecules between two dimers helped the formation of exten-
sive hydrogen bonds between Nap-GFF and both the hydrogen
bonds and aromatic interactions helped to efficiently extend
the supramolecular chains to form superstructures.
7 S. Kiyonaka, S. Shinkai and H. Hamachi, Chem.–Eur. J., 2003, 9,
976.
8 S. Sutton, N. L. Campbell, A. I. Cooper, M. Kirkland, W. J. Frith
and D. J. Adams, Langmuir, 2009, 25, 10285; Y. J. Seo, S. Bhuniya
and B. H. Kim, Chem. Commun., 2007, 1804; A. Shome,
S. Debnath and P. K. Das, Langmuir, 2008, 24, 4280.
9 S. Dutta, D. Das, A. Dasgupta and P. K. Das, Chem.–Eur. J.,
2010, 16, 1493; M. Suzuki and K. Hanabusa, Chem. Soc. Rev.,
2009, 38, 967.
10 S. Kiyonaka, K. Sugiyasu, S. Shinkai and I. Hamachi, J. Am.
Chem. Soc., 2002, 124, 10954.
11 S. Bhuniya, Y. J. Seo and B. H. Kim, Tetrahedron Lett., 2006, 47,
7153; Y. Gao, Y. Kuang, Z. F. Guo, Z. H. Guo, I. J. Krauss and
B. Xu, J. Am. Chem. Soc., 2009, 131, 13576; J. A. Saez, B. Escuder
and J. F. Miravet, Tetrahedron, 2010, 66, 2614.
12 Y. H. Hu, H. M. Wang, J. Y. Wang, S. B. Wang, W. Liao,
Y. G. Yang, Y. J. Zhang, D. L. Kong and Z. M. Yang, Org.
Biomol. Chem., 2010, 8, 3267.
13 A. Mahler, M. Reches, M. Rechter, S. Cohen and E. Gazit, Adv.
Mater., 2006, 18, 1365; X. H. Yan, P. L. Zhu and J. B. Li, Chem.
Soc. Rev., 2010, 39, 1877; X. H. Yan, Y. Cui, Q. He, K. W. Wang
and J. B. Li, Chem. Mater., 2008, 20, 1522.
14 See the supporting information.
15 Z. M. Yang, H. W. Gu, J. Du, J. H. Gao, B. Zhang, X. X. Zhang
and B. Xu, Tetrahedron, 2007, 63, 7349.
16 H. M. Wang, C. H. Ren, Z. J. Song, L. Wang, X. M. Chen and
Z. M. Yang, Nanotechnology, 2010, 21, 225606.
In summary, we demonstrated the first example of the
application of SM hydrogels in anti-degradation of complex
proteins by a simple encapsulation strategy. Such a strategy
would not dramatically decrease the activity of the encapsulated
enzyme in the SM hydrogels. Though only 58% of the
encapsulated enzyme remained in the gel after storage at room
temperature for 7 days, the stability of the encapsulated
protein at room temperature might be further improved by
using SM gels with higher mechanical property. The results
indicated that SM hydrogels not only had potential to be
developed into promising biomaterials for long term storage of
recombinant proteins at room temperature, but also would be
useful for the delivery of proteins to treat different diseases. It
was also quite unusual that the addition of a tiny amount of
protein caused such dramatic effects on the microscopic and
macroscopic properties of the hydrogels, which will be further
studied and reported in due course.
The authors acknowledge NSFC (20974054 and 30700178),
the TBR program (08JCZDJC20500), and the 111 project
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 955–957 957