LETTER
Efficient System for Activation of Aromatic Terminal Olefins
2911
nylethanol and only 15% of tail-to-tail dimerized product
3 (Scheme 1; entry 14, Table 1). On the other hand sty-
rene or a-methylstyrene on heating with silica-supported
KHSO4 in dichloroethane or in toluene, gave 58–66%
yields of tail-to-tail and head-to-tail dimerized products 3
and 5. respectively (Scheme 2; entries 15, 16, 18, and 19,
Table 1). a-Methylstyrene on heating in methanol at its
reflux temperature in the presence of KHSO4–SiO2 also
gave 26% of 1-methyl-1-phenylmethoxyethane (entry 17,
Table 1) and 55% of head-to-tail dimerized product 5
(Scheme 2). It is postulated that the absence of any elec-
tron-releasing group on the benzene ring facilitates tail-to-
tail dimerization over head-to-tail dimerization. The role
of the electron-releasing substituent in both the nucleo-
philic addition and the dimerization is presumably to sta-
bilize the carbonium ion generated in the benzylic
position by potassium bisulfate facilitating the attack by
nucleophilic methoxy group or by another styrene mole-
cule. This is not possible in the case of substrates having
electron-withdrawing groups.
Acknowledgment
We gratefully acknowledge Dr. P. G. Rao, Director, NEIST, Jorhat
for providing the facilities to carry out this work. The authors also
gratefully acknowledge Dr. J. C. S. Kataky, Head, Synthetic Orga-
nic Chemistry Division for his help with carrying out this work and
CSIR, India for the funding.
References and Notes
(1) (a) Christoffers, J.; Bergman, R. G. J. Am. Chem. Soc. 1996,
118, 4715. (b) Liang, Y.; Yap, G. P. A.; Rheingold, A. L.;
Theopold, K. H. Organometallics 1996, 15, 5284.
(c) Hajela, S.; Bercaw, J. E. Organometallics 1994, 13,
1147. (d) Aljarallah, A. M.; Anabtawi, J. A.; Siddiqui, M. A.
B.; Aitani, A. M.; Al-Sa’doun, A. W. Catal. Today 1992, 14,
1. (e) Skupinska, J. Chem. Rev. 1991, 91, 613. (f) Piers, W.
E.; Shapiro, P. J.; Bunel, E. E.; Bercaw, J. E. Synlett 1990,
74. (g) Pillai, S. M.; Ravindranathan, M.; Sivaram, S. Chem.
Rev. 1986, 86, 353. (h) Kondo, T.; Takagi, D.; Tsujita, H.;
Ura, Y.; Wada, K.; Mitsudo, T.-A. Angew. Chem. Int. Ed.
2007, 46, 5958.
(2) Zhang, S.-Y.; Tu, Y.-Q.; Fan, C.-A.; Zhang, F.-M.; Shi, L.
Angew. Chem. Int. Ed. 2009, 48, 8761.
(3) (a) Wang, D.; Li, J.; Li, N.; Gao, T.; Hou, S.; Chen, B. Green
Chem. 2010, 12, 45. (b) Zaccheria, F.; Psaro, R.; Ravasio,
N. Tetrahedron Lett. 2009, 50, 5221.
The reaction was studied with other sodium and potassi-
um salts such as NaHSO4, K2SO4, KCl and KF. However,
compared to KHSO4 all other salts showed inferior or no
catalytic activity (Figure 2). The detailed assignment of
the 1H NMR spectra of 3–5 and comparison with the liter-
ature data established their structures (Scheme 2).
(4) Motokura K., Fujita N., Mori K., Mizugaki T., Ebitani K.,
Kaneda K.; J. Am. Chem. Soc.; 2005, 127: 9674.
(5) Sultanov R. M., Vasil’ev V. V., Dzhemilev U. M.; Russ. J.
Org. Chem.; 2010, 46: 355.
(6) Tobisu M., Hyodo I., Onoe M., Chetani N.; Chem.
Commun.; 2008, 6013.
(7) Tsuchimoto, T.; Kamiyama, S.; Negoro, R.; Shirakawa, E.;
Kawakami, Y. Chem. Commun. 2003, 862.
(8) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46,
677.
(9) Zuniga, C.; Moya, S. A.; Aguirre, P. Catal. Lett. 2009, 130,
373.
(10) Yao, X.; Li, C.-J. J. Am. Chem. Soc. 2004, 126, 6884.
(11) Zhang, X.; Corma, A. Chem. Commun. 2007, 3080.
(12) Motokura, K.; Fujita, N.; Mori, K.; Mizugaki, T.; Ebitani,
K.; Kaneda, K. Angew. Chem. Int. Ed. 2006, 45, 2605.
(13) Liu, P. N.; Xia, F.; Wang, Q. W.; Ren, Y. J.; Chen, J. Q.
Green Chem. 2010, 12, 1049.
(14) (a) Arumugam, P.; Kartikeyan, G.; Perumal, P. T. Chem.
Lett. 2004, 33, 1146. (b) Kumar, R. S.; Nagarajan, R.;
Perumal, P. T. Synthesis 2004, 949.
Figure 2 Effect of change of metal catalyst on conversion of 4-
methoxystyrene to both types of products
(15) Sartori, G.; Balini, R.; Bigi, F.; Bosica, G.; Maggi, R.; Righi,
P. Chem. Rev. 2004, 104, 199.
(16) Ramesh, C.; Mahender, G.; Ravindranath, N.; Das, B.
Tetrahedron Lett. 2003, 44, 1465.
(17) Goswami, A.; Das, R. N.; Borthakur, N. Indian J. Chem.,
Sect. B 2007, 46, 1893.
(18) Dawans, F. Tetrahedron Lett. 1971, 1943.
(19) Wu, G.; Geib, S. J.; Rheingold, A. L.; Heck, R. F. J. Org.
Chem. 1988, 53, 3238.
(20) (a) Catalyst Preparation: KHSO4 (20 g, 144 mmol) was
dissolved in distilled H2O (100 mL) and silica gel (25 g, 60–
120 mesh) was added. The soaked mixture was thoroughly
mixed and dried in a hot oven at 150 °C for 24 h to give a
free flowing powdery solid. The dried solid mixture was
then stored in a vacuum desiccator. (b) Typical
Experimental Procedure for Alkoxylation:
In conclusion, we have described a KHSO4-catalyzed ac-
tivation of styrenes which involves either nucleophilic at-
tack by alkoxide or dimerization through head-to-tail or
tail-to-tail coupling. Although several reports have ap-
peared for such reactions using transition metal catalysts,
the solid-supported acidic salt mediated catalyzed reac-
tions described in this communications represent the first
report of C–C and C–O functionalization. The advantages
of the method are that it is a one-pot process, noncorro-
sive, the catalyst can be easily recovered for recycling and
the procedure is simple.
Supporting Information for this article is available online at
4-Methoxystyrene (1 g, 7.5 mmol) was added slowly to a
round-bottomed flask containing KHSO4–SiO2 (100 mg)
and 4-phenyl-1-butanol (5 mL). The mixture was then stirred
Synlett 2010, No. 19, 2908–2912 © Thieme Stuttgart · New York