to other processes. The most direct pathway leading from 3
to 4 would involve a 1,3-hydride shift.6 However, orbital
symmetry considerations dictate that, in the case of a
migrating hydrogen, a 1,3-hydride shift would have to
occur antarafacially and thus represents an essentially
geometry-forbidden pathway.7 In addition, given the rela-
tively mild reaction conditions, a 1,3-hydride shift seems to
be unlikely to account for this transformation.
of azomethine ylide 5.8,9 Reprotonation of this dipolar
intermediate results in the new iminium ion 4. Subsequent
proton loss leads to aromatization and formation of pyrrole
2. As an alternative to benzoate, which is depicted as the
proposed base in this process, deprotonation could also be
promoted by unmodified 3-pyrroline.
Scheme 3. Evidence for Azomethine Ylide Intermediates
Scheme 2. Proposed Mechanism for Redox Isomerization
In considering alternative mechanisms, we proposed the
reaction sequence as outlined in Scheme 2. Deprotonation
of iminium ion 3 is envisioned to give rise to the formation
(5) For other selected examples of redox neutral amine functionaliza-
tions, see: (a) Ten Broeke, J.; Douglas, A. W.; Grabowski, E. J. J. J. Org.
Chem. 1976, 41, 3159. (b) Verboom, W.; Reinhoudt, D. N.; Visser, R.;
Harkema, S. J. Org. Chem. 1984, 49, 269. (c) De Boeck, B.; Jiang, S.;
Janousek, Z.; Viehe, H. G. Tetrahedron 1994, 50, 7075. (d) Pastine, S. J.;
McQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2005, 127, 12180. (e)
Tobisu, M.; Chatani, N. Angew. Chem., Int. Ed. 2006, 45, 1683. (f)
Matyus, P.; Elias, O.; Tapolcsanyi, P.; Polonka-Balint, A.; Halasz-
Dajka, B. Synthesis 2006, 2625. (g) Indumathi, S.; Kumar, R. R.;
Perumal, S. Tetrahedron 2007, 63, 1411. (h) Ryabukhin, S. V.; Plaskon,
A. S.; Volochnyuk, D. M.; Shivanyuk, A. N.; Tolmachev, A. A. Synthe-
sis 2007, 2872. (i) Ryabukhin, S. V.; Plaskon, A. S.; Volochnyuk, D. M.;
Shivanyuk, A. N.; Tolmachev, A. A. J. Org. Chem. 2007, 72, 7417. (j)
Belskaia, N. P.; Deryabina, T. G.; Koksharov, A. V.; Kodess, M. I.;
Dehaen, W.; Lebedev, A. T.; Bakulev, V. A. Tetrahedron Lett. 2007, 48,
9128. (k) Oda, M.; Fukuchi, Y.; Ito, S.; Thanh, N. C.; Kuroda, S.
Tetrahedron Lett. 2007, 48, 9159. (l) Zheng, L.; Yang, F.; Dang, Q.; Bai,
X. Org. Lett. 2008, 10, 889. (m) Che, X.; Zheng, L.; Dang, Q.; Bai, X.
In order to establish the intermediacy of azomethine
ylides such as 5, we opted to investigate the reaction of
3-pyrroline (1) with aldehyde 6 (Scheme 3). The latter
reaction partner possesses a pendant dipolarophile and
has previously been used in intramolecular [3 þ 2] cyclo-
additions.10,11 Indeed, a reaction of 1 and 6, conducted in
the presence of catalytic amounts of benzoic acid under
microwave irradiation, led to the rapid formation of 7 in
53% yield.12 The expected [3 þ 2] cycloaddition product 7
was obtained in the form of a single diastereomer. This
strongly suggests the intermediacy of azomethine ylides in
this redox neutral reaction cascade.
Next we sought to apply this method to a related process,
namely the formation of N-alkyl indoles from indolines and
aldehydes. This approach would provide an efficient
alternative to the N-alkylation of preformed indoles which
sometimes suffers from issues of regioselectivity.13
Although iminium ions derived from aldehydes and indo-
line might be expected to be somewhat less acidic than
species such as 3, these reactions proceeded efficiently when
conducted under microwave irradiation. As outlined in
Figure 1, indoline readily underwent reactions with a
range of electronically diverse benzaldehydes.14 The use
of only 1.2 equiv of indoline proved sufficient to achieve
ꢀ
Synlett 2008, 2373. (n) Polonka-Balint, A.; Saraceno, C.; Ludanyi, K.;
ꢀ
Benyei, A.; Matyus, P. Synlett 2008, 2846. (o) Barluenga, J.; Fananas-
Mastral, M.; Aznar, F.; Valdes, C. Angew. Chem., Int. Ed. 2008, 47,
6594. (p) Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Chem. Lett.
2009, 38, 524. (q) Ruble, J. C.; Hurd, A. R.; Johnson, T. A.; Sherry,
D. A.; Barbachyn, M. R.; Toogood, P. L.; Bundy, G. L.; Graber, D. R.;
Kamilar, G. M. J. Am. Chem. Soc. 2009, 131, 3991. (r) Cui, L.; Peng, Y.;
Zhang, L. J. Am. Chem. Soc. 2009, 131, 8394. (s) Vadola, P. A.; Sames,
D. J. Am. Chem. Soc. 2009, 131, 16525. (t) Lo, V. K.-Y.; Zhou, C.-Y.;
Wong, M.-K.; Che, C.-M. Chem. Commun. 2010, 46, 213. (u) Kuang, J.;
Ma, S. J. Am. Chem. Soc. 2010, 132, 1786. (v) Cui, L.; Ye, L.; Zhang, L.
Chem. Commun. 2010, 46, 3351. (w) Kang, Y. K.; Kim, S. M.; Kim, D. Y.
J. Am. Chem. Soc. 2010, 132, 11847. (x) Dunkel, P.; Turos, G.; Benyei,
A.; Ludanyi, K.; Matyus, P. Tetrahedron 2010, 66, 2331. (y) Zhou, G.;
Zhang, J. Chem. Commun. 2010, 46, 6593.
(6) A 1,3-hydride shift has been proposed to occur in a thermal,
uncatalyzed reaction between 3-pyrroline and cyclohexanone to yield
N-cyclohexylpyrrole: Cook, A. G.; Switek, K. A.; Cutler, K. A.; Witt,
A. N. Lett. Org. Chem. 2004, 1, 1.
(7) (a) Woodward, R. B.; Hoffman, R. J. Am. Chem. Soc. 1965, 78,
2511. (b) Berson, J. A. Acc. Chem. Res. 1968, 1, 152.
(8) Deprotonation of iminium ions is an established concept for the
generation of azomethine ylides. For examples, see: (a) Huisgen, R.;
Grashey, R.; Steingruber, E. Tetrahedron Lett. 1963, 1441. (b) Toth, G.;
Frank, J.; Bende, Z.; Weber, L.; Simon, K. J. Chem. Soc., Perkin Trans. 1
1983, 1961. (c) Ardill, H.; Grigg, R.; Sridharan, V.; Surendrakumar, S.;
Thianpatanagul, S.; Kanajun, S. J. Chem. Soc., Chem. Commun. 1986,
602. (d) Kanemasa, S.; Takenaka, S.; Watanabe, H.; Tsuge, O. J. Org.
Chem. 1989, 54, 420. (e) Ardill, H.; Fontaine, X. L. R.; Grigg, R.;
Henderson, D.; Montgomery, J.; Sridharan, V.; Surendrakumar, S.
Tetrahedron 1990, 46, 6449. (f) Grigg, R.; Sridharan, V.; Thornton-Pett,
M.; Wang, J.; Xu, J.; Zhang, J. Tetrahedron 2002, 58, 2627.
(10) See for instance ref 8e.
(11) For a review on intramolecular azomethine ylide cycloadditions,
see: Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765.
(12) Conventional thermal conditions were also evaluated briefly.
However, we found the use of microwave irradiation to be superior in
terms of overall efficiency. Consequently, microwave acceleration was
used as the method of choice throughout this study.
(13) For an example of efficient indole N-alkylation, see: Hayat, S.;
Attaur, R.; Choudhary, M. I.; Khan, K. M.; Schumann, W.; Bayer, E.
Tetrahedron 2001, 57, 9951 and references cited therein.
(14) During the preparation of this manuscript, Sun, Pan and cow-
orkers reported the formation of N-alkyl indoles under very similar but
reflux conditions, using 2 equiv of indoline. These authors proposed the
intervention of a 1,3-hydride shift: Mao, H.; Xu, R.; Wan, J.; Jiang, Z.;
Sun, C.; Pan, Y. Chem.;Eur. J. 2010, 16, 13352.
(9) See also: Kadas, I.; Szanto, G.; Toke, L.; Simon, A.; Toth, G. J.
Heterocycl. Chem. 2007, 44, 1373 and references cited therein.
Org. Lett., Vol. 13, No. 4, 2011
813