Table 1 Palladium catalyzed furan fragmentation of Ugi–Smiles
adducts
Beside the synthetic potential of these fragmentations,
the disclosure of this new reactive path reveals interesting
mechanistic elements about palladium catalyzed C–H activation
of heterocycles. Of the various mechanisms proposed for
these reactions, Heck-type reactive pathways are usually
discarded10,13 and there are still discussions between electro-
philic palladations (SEAr path)10a,b and concerted metalation
deprotonation processes (CMD path).10c–e In the case of
2-substituted furans, the fragmentations reported herein are
in strong support of an SEAr process. The mechanism of these
reactions as well as their extension to other 5-membered ring
systems are currently being examined.
Product
(yield, %)
Entry R1
R2
R3 R4 R5
X
Y
1
2
3
4
5
6
7
8
9
10
p-MeOBn
p-ClBn
p-ClBn
i-Bu
Me
H
H
H
H
H
Me i-Pr N
Me i-Pr N
Me i-Pr N
Me i-Pr N
N
N
N
N
N
N
N
N
6a (85)
6b (88)
6c (68)
6d (71)
6e (76)
6f (58)
6g (66)
6h (78)
We thank the French Ministry of Defense for financial
support.
CH2CH2Ara Me
p-MeOBn
Cy
p-ClBn
p-ClBn
p-MeOBn
p-ClBn
i-Bu
i-Bu
Me Me i-Pr N
Me Me i-Pr N
Notes and references
p-ClPh Me Me i-Pr N
i-Bu
Me
Me Me Ph N
H
H
1 A. T. Balaban, D. C. Oniciu and A. R. Katritzky, Chem. Rev.,
2004, 104, 2777–2812.
H
H
H
H
C–Me C–NO2 6i (66)
C–Cl C–NO2 6j (71)
i-Bu
2 (a) B. H. Lipshutz, Chem. Rev., 1986, 86, 795–819; (b) B. A. Keay
and P. W. Dibble, in Comprehensive Heterocyclic Chemistry II, ed.
A. R. Katrizky, C. W. Rees, E. F. Schriven and C. W. Bird,
Pergamon, Oxford, U.K., 1996, vol. 2, pp. 395–436; (c) G. W.
H. Cheeseman and C. W. Bird, in Comprehensive Heterocyclic
Chemistry: The Structure, Reactions, Synthesis and Uses of
Heterocyclic Compounds, Pergamon Press, Oxford, New York,
1984, vol. 4; (d) M. Shipman, Contemp. Org. Synth., 1995, 2, 1–17.
3 (a) G. Benson, Org. Synth., 1943, Coll. Vol. 2, 220; (b) S. Takano,
S. Otaki and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1983,
1172–1174; (c) M. D. Bezoari and W. W. Paudler, J. Org. Chem.,
1980, 45, 4584–4586; (d) R. Faragher and T. L. Gilchrist, J. Chem.
Soc., Perkin Trans. 1, 1979, 258–262; (e) T. Kurihara, S. Harusava,
J. Hirai and R. Yoneda, J. Chem. Soc., Perkin Trans. 1, 1987,
1771–1776.
a
Ar = 3,4-MeOC6H3
Table 2 Palladium catalyzed furan fragmentation of model compounds
Product
(yield, %)
Entry
R1
R2
R3
R4
X
Y
Z
4 (a) C. Rivalle, J. Andre-Louisfert and E. Bisagni, Tetrahedron,
1976, 32, 829–834; (b) H. Hikino, K. Agatsuma, C. Konno and
T. Takemoto, Tetrahedron Lett., 1968, 9, 4417–4419;
(c) A. V. Butin, T. A. Stroganova, I. V. Lodina and
G. D. Krapivin, Tetrahedron Lett., 2001, 42, 2031–2033;
(d) A. V. Butin, S. K. Smirnov, T. A. Stroganova, W. Bender
and G. D. Krapivin, Tetrahedron, 2007, 63, 474–491; Furan ring
opening under addition of iminium cations: (e) A. V. Butin,
M. G. Uchuskin, A. S. Pilipenko, F. A. Tsiunchik,
D. A. Cheshkov and I. V. Trushkov, Eur. J. Org. Chem., 2010,
920–926; (f) S. P. Tanis, M. V. Deaton, L. A. Dixon,
M. C. McMills, J. W. Raggon and M. A. Collins, J. Org. Chem.,
1998, 63, 6914–6928; Similar opening with tropylium ions:
(g) K. Yamamura, Y. Houda, M. Hashimoto, T. Kimura,
M. Kamezawa and T. Otani, Org. Biomol. Chem., 2004, 2,
1413–1418.
5 (a) N. Clausen-Kaas and Z. Tyle, Acta Chem., Scand., 1952, 6,
667–670; (b) Y. Lefebvre, Tetrahedron Lett., 1972, 13, 133–136;
(c) G. Piancatelli, A. Scettri and S. Barbadoro, Tetrahedron Lett.,
1976, 39, 3555–3558; (d) O. Achmatowicz and R. Bielski,
Carbohydr. Res., 1977, 55, 165–176; (e) K. Yakushijin,
M. Kozuka and H. Furukawa, Chem. Pharm. Bull., 1980, 28,
2178–2184; (f) D. Balachari and G. A. O’Doherty, Org. Lett., 2000,
2, 863–866; (g) M. A. Ciufolini, Y. W. Hermann, Q. Dong,
T. Shimizu, S. Swaminathan and N. Xi, Synlett, 1998, 105–114;
(h) J. M. Harris and A. Padwa, J. Org. Chem., 2003, 68, 4371–4381;
(i) A. R. Kelly, M. H. Kerrigan and P. J. Walsh, J. Am. Chem.
Soc., 2008, 130, 4097–4104.
1
2
3
4
5
6
7
8
9
i-Pr
i-Pr
Ph
Ph
Ph
i-Pr
H
Me
Me
Me
Me
Me
Me
H
Et
Me
Et
Me
Bn
Me
Et
Bn
Me
H
Me
H
Me
H
H
H
H
H
I
I
I
I
I
Br
I
I
I
N
N
N
N
N
N
C–H
C–H
C–H
N
N
N
N
N
N
C–H
C–H
C–H
8a (72)
8b (77)
8c (76)
8d (81)
8e (75)
8f (59)
8g (83)
8h (78)
8i (77)
H
Cl
H
H
to form highly reactive methylenequinone intermediates
(corresponding to C in Scheme 1).9d
The examples reported in Table 1 and 2 underscore the high
potential of this process for the preparation of indoles. These
compounds are important medicinal scaffolds and the additional
unsaturated carbonyl moiety opens up many opportunities
for further functionalizations. In addition, this process is not
limited to cyclizations forming five membered rings as shown
by the behavior of furans 9. Indeed, under similar treatment
with palladium under microwave irradiation we could
observe an analogous cascade leading to the formation of
isoquinolinones 10 (Scheme 3).
6 For
a furan ring opening after thioisocyanate addition:
(a) A. V. Butin, F. A. Tsiunchik, V. T. Abaev and
V. E. Zavodnik, Synlett, 2008, 1145–1148; For a further radical
triggered furan ring opening: (b) A. Demircan and P. J. Parsons,
Synlett, 1998, 1215–1216.
7 For gold catalyzed ring opening of alkynylfurans see: (a)
A. S. K. Hashmi, T. M. Frost and J. W. Bats, J. Am. Chem.
Soc., 2000, 122, 11553–11554; (b) Y. Chen, Y. Lu, G. Li and
Y. Liu, Org. Lett., 2009, 11, 3838–3841.
Scheme 3 Furan ring openings towards isoquinolines.
1888 Chem. Commun., 2011, 47, 1887–1889
c
This journal is The Royal Society of Chemistry 2011