H. Li et al. / Tetrahedron Letters 52 (2011) 530–533
533
Table 3
We also thank the Laboratory of Organic Functional Molecules, the
Sino-French Institute of ECNU for support.
Synthesis of quinolines from o-aminoaryl ketones or benzylic alcohols with ynone
Entry Substrates
Ynone
Product
Yielda
(%)
Supplementary data
O
O
Me
O
O
O
O
Supplementary data (Experimental details and spectroscopic
characterization of all new compounds) associated with this article
Me
Ph
1
2
3
4
34
53
42
58
3m
3n
2a
NH2
O
N
4a
4b
4c
Ph
Ph
References and notes
2a
NH2
OH
N
1. (a) Michael, J. P. Nat. Prod. Rep. 2007, 24, 223; (b) Michael, J. P. Nat. Prod. Rep.
2005, 22, 627; (c) Roma, G.; Braccio, M. D.; Grossi, G.; Mattioli, F.; Ghia, M. Eur.
J. Med. Chem. 2000, 35, 1021; (d) Chen, Y.-L.; Fang, K.-C.; Sheu, J.-Y.; Hsu, S.-L.;
Tzeng, C.-C. J. Med. Chem. 2001, 44, 2374.
2. Kleeman, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical Substances,
Synthesis, Patents, Applications; Thieme: Stuttgart, Germany, 2001; (b)
Vaitilingam, B.; Nayyar, A.; Palde, P. B.; Monga, V.; Jain, R.; Kaur, S.; Singh, P.
P. Bioorg. Med. Chem. 2004, 12, 4179.
3. (a) Ohashi, A.; Tsuguchi, A.; Imura, H.; Ohashi, K. Anal. Sci. 2004, 20, 1091; (b)
Wang, H.; Liu, Z.; Liu, C.; Zhang, D.; Lu, Z.; Geng, H.; Shuai, Z.; Zhu, D. Inorg. Chem.
2004, 43, 4091; (c) Hu, Y.; Zhang, G.; Randolph, P. T. Org. Lett. 2003, 5, 2251.
4. (a) Nakatani, K.; Sando, S.; Saito, I. J. Am. Chem. Soc. 2000, 122, 2172; (b)
Nakatani, K.; Sando, S.; Saito, I. Bioorg. Med. Chem. 2001, 9, 2381; (c) Nguyen, C.
H.; Marchand, C.; Delane, S.; Sun, J.-S.; Garestier, H.; Bisagni, E. J. Am. Chem. Soc.
1998, 120, 2501; (d) Chiang, C.-L.; Shu, C.-F. Chem. Mater. 2002, 14, 682.
5. (a) Skraup, Z. H. Ber. Dtsch. Chem. Ges. 1880, 13, 2086; (b) Manske, R. H. F.;
Kulka, M. Org. React. 1953, 7, 59.
Me
Me
2a
3m
NH2
OH
N
Ph
Ph
NH2
2a
3n
N
4d
a
Isolated yields. Unless otherwise noted, all reactions were carried out in 1,4-
dioxane at 100 °C.
6. Doebner, O.; von Miller, W. Ber. Dtsch. Chem. Ges. 1881, 14, 2812.
7. Friedlander, F. Ber. Dtsch. Chem. Ges. 1882, 15, 2572.
8. Combes reaction: (a) Combes, A. Bull. Soc. Chim. Fr. 1883, 49, 89; (b) Bergstrom,
F. W. Chem. Rev. 1944, 35, 77.
to carry out the reaction under solvent-free condition at 30 °C; it is
interesting to see that the Michael addition product of 5a was ob-
tained in 61% yield after 1 h. When 5a was subjected to the stan-
dard reaction conditions, it gave the desired quinoline 3i in 78%
isolated yield after 3 h (Scheme 1).
9. For review see: (a) Marco-Contelles, J.; Perez-mayoral, E.; Samadi, A.; Carreiras,
M.; Soriano, E. Chem. Rev. 2009, 109, 2652; For selected examples see: (b)
Cacchi, S.; Fabrizi, G.; Filisti, E. Org. Lett. 2008, 10, 2629; (c) McNaughton, B. R.;
Miller, B. L. Org. Lett. 2003, 5, 4257; (d) Mahata, P. K.; Venkatesh, C.; Syam
Kumar, U. K.; Ila, H.; Junjappa, H. J. Org. Chem. 2003, 68, 3966; (e) Jia, C.; Zhang,
Z.; Tu, S.; Wang, G. Org. Biomol. Chem. 2006, 4, 104; (f) Riesgo, E. C.; Jin, X.;
Thummel, R. P. J. Org. Chem. 1996, 61, 3017; (g) Yang, D.; Guo, W.; Cai, Y.; Jiang,
L.; Jiang, K.; Wu, X. Heteroat. Chem. 2008, 19, 229; (h) Kiss, A.; Potor, A.; Hell, Z.
Catal. Lett. 2008, 125, 250; Li, A.-H.; Beard, D. J.; Coate, H.; Honda, A.;
Kadalbajoo, M.; Kleinberg, A.; Laufer, R.; Mulvihill, K. M.; Nigro, A.; Rastogi, P.;
Sherman, D.; Siu, K. W.; Steinig, A. G.; Wang, T.; Werner, D.; Crew, A. P.;
10. (a) Horn, J.; Marsden, S. P.; Nelson, A.; House, D.; Weingarten, G. G. Org. Lett.
2008, 10, 4117; (b) Fan, J.; Wan, C.; Sun, G.; Wang, Z. J. Org. Chem. 2008, 73,
8608; (c) Korivi, R. P.; Cheng, C.-H. J. Org. Chem. 2006, 71, 7079; (d) Takahashi,
T.; Li, Y.; Stepnicka, P.; Kitamura, M.; Liu, Y.; Nakajima, K.; Kotora, M. J. Am.
Chem. Soc. 2002, 124, 576; (e) Beller, M.; Thiel, O. R.; Trauthwein, H.; Hartung,
C. G. Chem. Eur. J. 2000, 6, 2513; (f) Amii, H.; Kishikawa, Y.; Uneyama, K. Org.
Lett. 2001, 3, 1109; (g) Sangu, K.; Fuchibe, K.; Akiyama, T. Org. Lett. 2004, 6, 353;
(h) Wu, J.; Zhang, L.; Diao, T.-N. Synlett 2005, 17, 2653.
11. For selected examples see: (a) Correa, A.; Bolm, C. Angew. Chem., Int. Ed. 2007,
46, 8862; (b) Correa, A.; Elmore, S.; Bolm, C. Chem. Eur. J. 2008, 14, 3527; (c)
Correa, A.; Carril, M.; Bolm, C. Chem. Eur. J. 2008, 14, 10919; (d) Hatakeyama, T.;
Yoshimoto, Y.; Gabriel, T.; Nakamura, M. Org. Lett. 2008, 10, 5341; (e) Kohno,
K.; Nakagawa, K.; Yahagi, T.; Choi, J.-C.; Yasuda, H.; Sakakura, T. J. Am. Chem.
Soc. 2009, 131, 2784; (f) Li, Z.; Yu, R.; Li, H. Angew. Chem., Int. Ed. 2008, 47, 1; (g)
Li, Z.; Cao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2007, 46, 6505; For reviews see: (h)
Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217; Sarhan, A. A.
O.; Bolm, C. Chem. Soc. Rev. 2009, 38, 2730; (j) Bolm, C. Nat. Chem. 2009, 1, 420.
and references cited therein; Christoffers, J.; Frey, H.; Rosiak, A. In Iron Catalysis
in Organic Chemistry; Plietker, B., Ed.; Wiley-Vch: Weinheim, 2008; p 217.
12. (a) Yuan, X.; Xu, X.; Zhou, X.; Yuan, J.; Mai, L.; Li, Y. J. Org. Chem. 2007, 72, 1510;
(b) Xu, X.; Yang, J.; Liang, L.; Liu, J.; Mai, L.; Li, Y. Tetrahedron Lett. 2009, 50, 57;
(c) Zhou, X.; Zhang, H.; Yuan, J.; Mai, L.; Li, Y. Tetrahedron Lett. 2007, 48, 7236;
(d) Xu, X.; Liu, J.; Liang, L.; Li, Y. Adv. Synth. Catal. 2009, 351, 2599; (e) Li, H.; Liu,
J.; Yan, B.; Li, Y. Tetrahedron Lett. 2009, 50, 2353; (f) Li, H.; Yang, J.; Liu, Y.; Li, Y.
J. Org. Chem. 2009, 74, 6797; (g) Li, E.; Xu, X.; Li, H.; Zhang, H.; Xu, X.; Yuan, X.;
Li, Y. Tetrahedron 2009, 65, 8961; (h) Xu, X.; Xu, X.; Li, H.; Xie, X.; Li, Y. Org. Lett.
2010, 12, 100.
Based on the above observation, a plausible reaction mecha-
nism is proposed in Scheme 2.15
In order to further probe the scope of this process, we also
examined the o-aminoaryl ketones and o-amino benzylic alcohols
under the optimized reaction conditions, the results are shown in
Table 3. When o-aminoaryl ketone with a methyl group, namely
1-(2-aminophenyl)ethanone (4a) was used, the desired 4-methyl
substituted quinoline 3m was obtained in moderated yield (Ta-
ble 3, entry 1). Similarly, o-aminoaryl ketone bearing a phenyl
group afforded the corresponding 4-phenyl substituted quinoline
3n in 53% yield (Table 3, entry 2). o-Amino benzylic alcohols could
also be employed in the reaction and gave good yields of the quin-
oline derivatives. For example, 1-(2-aminophenyl)ethanol (4c) re-
acted smoothly with 1-phenylprop-2-yn-1-one (2a) to give
quinoline 3m in 42% yield (Table 3, entry 3). When (2-aminophe-
nyl)(phenyl)methanol (4d) was employed, the desired 4-phenyl
substituted quinoline could be obtained in much higher yield (Ta-
ble 3, entry 4).
In summary, we have reported an efficient iron-catalyzed cas-
cade Michael addition–cyclization of ynones and a variety of o-
aminoaryl compounds such as o-aminoarylaldehydes, o-aminoaryl
ketones, and o-aminobenzyl alcohols. The reactions proceed to af-
ford 3-carbonyl quinoline derivatives with or without substituent
at 4-position in good to high yields using Iron(III) chloride hexahy-
drate as the catalyst under mild reaction conditions. A plausible
reaction mechanism is proposed. Further application of this novel
iron-catalyzed cascade Michael addition–cyclization procedure to
extend the scope of synthetic utility of the reaction is under pro-
gress in our group.
13. Reaction of 6-aminopiperonal with dimethyl acetylenedicarboxylate in the
presence of access amount of concentrated hydrochloric acid by two steps
reactions to give 2,3-diester substituted quinoline. See: (a) Hendrickson, J. B.;
Rees, R.; Templeton, J. F. J. Am. Chem. Soc. 1964, 86, 107; (b) Hendrickson, J. B.;
Rees, R. J. Am. Chem. Soc. 1961, 83, 1250.
14. (a) Diedrich, C. L.; Haase, D.; Saak, W.; Christoffers, J. Eur. J. Org. Chem. 2008,
1811; (b) Chang, J.; Yang, M.; Chang, C.; Chen, C.; Kuo, C.; Liou, J. J. Med. Chem.
2006, 49, 6412; (c) Diedrich, C. L.; Haase, D.; Christoffers, J. Synthesis 2008, 14,
2199.
Acknowledgments
We are grateful to the National Natural Science Foundation of
China (Nos. 20572025 and 20872037) for the financial support.
15. Yamazaki, S.; Takebayashi, M.; Miyazaki, K. J. Org. Chem. 2010, 75, 1188.