Please do not adjust margins
Chemical Science
Page 6 of 8
ARTICLE
Journal Name
3 A. J. J. Lennox, G. C. Lloyd-Jones, Chem. Soc. Rev., 2014, 43, 412-
A solution of pre-catalyst and base in water was mixed with a
solution of bromotriphenylethylene and 4-
443.
DOI: 10.1039/C9SC02171J
4 C. Torborg, M. Beller, Adv. Synth. Catal., 2009, 351, 3027-3043.
5 P. Devendar, R.-Y. Qu, W.-M. Kang, B. He, G.-F. Yang, J. Agric. Food
Chem., 2018, 66, 8914-8934.
6 M. J. Robb, S.-Y. Ku, C. J. Hawker, Adv. Mater., 2013, 25, 5686-5700.
7 A. Taheri Kal Koshvandi, M. M. Heravi, T. Momeni, Appl
Organometal Chem., 2018, 32, e4210.
8 M. Beller, A. Zapf, Handbook of Organopalladium Chemistry for
Organic Synthesis. Negishi, E.-i., Ed. Wiley: New York, 2002; Vol. 1, pp
1209-1222.
9 B. H. Lipshutz, Chem, 2018, 4, 2004-2007.
10 B. H. Lipshutz, N. A. Isley, J. C. Fennewald, E. D. Slack, Angew.
Chem. Int. Ed., 2013, 52, 10952-10958.
11 S. Handa, Y. Wang, F. Gallou, B. H. Lipshutz, Science, 2015, 349,
1087-1091.
12 S. Handa, M. P. Andersson, F. Gallou, J. Reilly, B. H. Lipshutz,
Angew. Chem. Int. Ed., 2016, 55, 4914-4918.
methylphenylboronic acid pinacol ester in toluene, and
delivered into a pack-bed reactor (packed with stainless steel
beads)51 submerged in a preheated 110 °C bath using 30 min
residence time. After reaction, the resulting mixture was
collected in a flask under nitrogen atmosphere at room
temperature. The water layer containing catalyst was
continuously extracted with pump 1 and reinjected into the
flow line. In this way, after 8.3 h of catalyst recycling, 4.15 g of
73 was isolated from the collected organic layer using only 1.3
mg pre-catalyst 6a (13.8 μg Pd).
With this flow technique in hand, other bi(hetero)aryl
compounds (74-78) and substituted styrene (79) were also
successfully synthesized at gram scales with 10-50 ppm of
palladium. Based on the excellent behavior of the continuous-
catalyst-recycling synthesis using flow chemistry, we believe
that a larger scale preparation could be realized by extending
the collection time without adding extra catalyst.
13 L. Chen, P. Ren, B. P. Carrow, J. Am. Chem. Soc., 2016, 138, 6392-
6395.
14 S. M. Wong, C. M. So, K. H. Chung, C. P. Lau, F. Y. Kwong, Eur. J.
Org. Chem., 2012, 2012, 4172-4177.
15 N. E. Leadbeater, V. A. Williams, T. M. Barnard, M. J. Collins, Org.
Process Res. Dev., 2006, 10, 833-837.
Conclusions
16 R. K. Arvela, N. E. Leadbeater, M. S. Sangi, V. A. Williams, P.
Granados, R. D. Singer, J. Org. Chem., 2005, 70, 161-168.
17 Á. Molnár, Chem. Rev., 2011, 111, 2251-2320.
18 W. Wang, L. Cui, P. Sun, L. Shi, C. Yue, F. Li, Chem. Rev., 2018, 118,
9843-9929.
19 T. Kitanosono, K. Masuda, P. Xu, S. Kobayashi, Chem. Rev., 2018,
118, 679-746.
In conclusion, we have developed a novel thermoresponsive
polymeric catalyst, which can rapidly shuttle between water
and organic phases, facilitating highly efficient SM cross-
coupling and tandem reaction with good to excellent isolate
yields at ppm level of catalyst usages. This method allows the
preparation of a broad scope of bi(hetero)aryls, and is well
tolerant to various functional groups. Furthermore, in
20 B. H. Lipshutz, Curr. Opin. Green Sus. Chem., 2018, 11, 1-8.
combination with flow chemistry, the catalyst shuttling enables 21 S. E. Hooshmand, B. Heidari, R. Sedghi, R. S. Varma, Green Chem.,
2019, 21, 381-405.
22 E. B. Landstrom, S. Handa, D. H. Aue, F. Gallou, B. H. Lipshutz,
Green Chem., 2018, 20, 3436-3443.
23 N. A. Isley, F. Gallou, B. H. Lipshutz, J. Am. Chem. Soc., 2013, 135,
17707-17710.
24 R. Martin, S. L. Buchwald, Acc. Chem. Res., 2008, 41, 1461-1473.
25 S. Harkal, F. Rataboul, A. Zapf, C. Fuhrmann, T. Riermeier, A.
Monsees, M. Beller, Adv. Synth. Catal., 2004, 346, 1742-1748.
26 H. Li, C. C. C. Johansson Seechurn, T. J. Colacot, ACS Catal., 2012,
2, 1147-1164.
27 G. C. Fu, Acc. Chem. Res., 2008, 41, 1555-1564.
28 M. Miura, Angew. Chem. Int. Ed., 2004, 43, 2201-2203.
29 U. Christmann, R. Vilar, Angew. Chem. Int. Ed., 2005, 44, 366-374.
30 C. M. So, C. P. Lau, F. Y. Kwong, Angew. Chem. Int. Ed., 2008, 47,
8059-8063.
31 C. Li, D. Chen, W. Tang, Synlett, 2016, 27, 2183-2200.
32 P. Slavik, D. W. Kurka, D. K. Smith, Chem. Sci., 2018, 9, 8673-8681.
33 B. Li, Z. Guan, W. Wang, X. Yang, J. Hu, B. Tan, T. Li, Adv. Mater.,
2012, 24, 3390-3395.
continuous-catalyst-recycling, further promoting the scalability
and efficiency of cross-coupling using ultralow loadings of
palladium. Given the significant influence of transition-metal-
catalyzed cross-coupling and increasing interests in sustainable
chemistry, we believe that based on the presented strategy,
new response modes can be developed by tuning the structure
of ligands with different polymeric species. Also, the
compatibility of this method with other metal-catalyzed
reactions is under exploration, which would promisingly
facilitate diverse applications.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
34 M. Chtchigrovsky, Y. Lin, K. Ouchaou, M. Chaumontet, M.
Robitzer, F. Quignard, F. Taran, Chem. Mater., 2012, 24, 1505-1510.
35 S. Doherty, J. G. Knight, T. Backhouse, E. Abood, H. Alshaikh, A. R.
Clemmet, J. R. Ellison, R. A. Bourne, T. W. Chamberlain, R. Stones, N.
J. Warren, I. J. S. Fairlamb, K. R. J. Lovelock, Adv. Synth. Catal., 2018,
360, 3716-3731.
36 R. Shen, W. Zhu, X. Yan, T. Li, Y. Liu, Y. Li, S. Dai, Z.-G. Gu, Chem.
Commun., 2019, 55, 822-825.
37 Z. Wang, Y. Yu, Y. X. Zhang, S. Z. Li, H. Qian, Z. Y. Lin, Green Chem.,
2015, 17, 413-420.
This research was finally supported by NSFC (no. 21704016), the
start-up funding from Fudan University, and the National
Program for Thousand Young Talents of China.
Notes and references
1 N. Miyaura, A. Suzuki, Chem. Rev., 1995, 95, 2457-2483.
2 C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V.
Snieckus, Angew. Chem. Int. Ed., 2012, 51, 5062-5085.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins