ORGANIC
LETTERS
2011
Vol. 13, No. 5
1092–1094
Facile Amide Formation via
S-Nitrosothioacids
Jia Pan, Nelmi O. Devarie-Baez, and Ming Xian*
Department of Chemistry, Washington State University, Pullman, Washington 99164,
United States
Received December 26, 2010
ABSTRACT
Here we report a novel amide bond formation strategy from simple thioacid and amine starting materials. The reaction is mediated by unstable but
very reactive S-nitrosothioacid intermediates. This fast reaction under mild conditions should be useful in synthesis.
Due to the importance in biology and drug discovery,
amide or peptide bond formation is an active area in
organic chemistry. In the past decade, a number of new
strategies for the construction of amide bonds have been
discovered.1 In particular, thioacid or thioester derivatives
are attractive starting materials. Recent studies have revea-
led some unique reactivity of these sulfur-based compounds
and demonstrated some advantages of them compared to
carboxylic acid derivatives in amide and peptide bond form-
ing sequences.2 In our recent efforts to study new chemistry
of thiol S-nitrosation,3 we envisioned that if thioacids were
subjected to nitrosation (Scheme 1), the corresponding
S-nitrosothioacids (NTA) could be formed. Such a sulfur-
nitrosation process may activate thioacids and lead to a
facile acylation with certain nucleophiles. Herein, we report
a very efficient amide bond formation mediated by NTA.
It is known that S-nitrosothiols are unstable moieties.
Their chemistry, especially synthetically useful reactions,
has not been well studied.4 NTA type molecules have never
been clearly identified, although such compounds may be
involved in some thiyl radical formation processes.5 In our
study, wefirsttestedthepreparation of NTA. Oneexample
using thiobenzoic acid 1 is shown in Scheme 2. Compound
1 was treated with organonitrite (RONO) or HCl/NaNO2
in organic solutions at rt or 0 °C. The resulted species,
presumably NTA 2, showed a deep green color (UV
spectra of 2 were shown in the Supporting Information),
which is the characteristic color of tertiary S-nitrosothiols.
The NTA 2 appeared to be unstable as the green color
readily faded when we attempted to isolate compound 2.
The final isolated product was disulfide 3, which is the
(1) For selected reviews, see: (a) Bode, J. W. Curr. Opin. Drug
Discovery Dev. 2006, 9, 765. (b) Han, S.; Kim, Y. Tetrahedron 2004,
60, 2447. (c) Nilsson, B. L.; Soellner, M. B.; Raines, R. T. Annu. Rev.
Biophys. Biomol. Struct. 2005, 34, 91. (d) Kimmerlin, T.; Seebach, D.
J. Peptide Res. 2005, 65, 229.
(2) For selected examples, see: (a) Bao, Y.; Li, X.; Danishefsky, S. J.
J. Am. Chem. Soc. 2009, 131, 12924. (b) Wang, P.; Danishefsky, S. J.
J. Am. Chem. Soc. 2010, 132, 17045. (c) Crich, D.; Sasaki, K. Org. Lett.
2009, 11, 3514. (d) Crich, D.; Sharma, I. Angew. Chem., Int. Ed. 2009, 48,
2355. (e) Crich, D.; Sharma, I. Angew. Chem., Int. Ed. 2009, 48, 7591.
(f) Crich, D.; Sana, K.; Guo, S. Org. Lett. 2007, 9, 4423. (g) Dawson,
P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1994, 266, 776.
(h) Dawson, P. E.; Churchill, M. J.; Ghadiri, M. R.; Kent, S. B. H. J. Am.
Chem. Soc. 1997, 119, 4325. (i) Liu, R.; Orgel, L. E. Nature 1997, 389, 52.
(j) Shangguan, N.; Katukojvala, S.; Greenberg, R.; Williams, L. J.
J. Am. Chem. Soc. 2003, 125, 7754. (k) Sheehan, J. C.; Johnson, D. A.
J. Am. Chem. Soc. 1952, 74, 4726.
(3) (a) Wang, H.; Xian, M. Angew Chem., Int. Ed. 2008, 47, 6598.
(b) Zhang, J.; Wang, H.; Xian, M. J. Am. Chem. Soc. 2009, 131, 3854.
(c) Wang, H.; Xian, M. J. Am. Chem. Soc. 2009, 131, 13238. (d) Zhang,
J.; Li, S.; Zhang, D.; Wang, H.; Whorton, A. R.; Xian, M. Org. Lett.
2010, 12, 4208. (e) Zhang, D.; Devarie-Baez, N. O.; Pan, J.; Wang, H.;
Xian, M. Org. Lett. 2010, 12, 5674. (f) Devarie-Baez, N. O.; Xian, M.
Org. Lett. 2010, 12, 752.
(4) For selected reviews on S-nitrosothiols, see: (a) Williams, D. L. H.
Acc. Chem. Res. 1999, 32, 869. (b) Szacilowski, K.; Stasicka, Z. Prog.
React. Kinet. Mech. 2001, 26, 1. (c) Al-Sadoni, H. H.; Ferro, A. Curr.
Med. Chem. 2004, 11, 2679. (d) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.;
Wen, Z.; Cai, T.; Janczuk, A. J. Chem. Rev. 2002, 102, 1091.
(5) Potapenko, D. I.; Bagryanskaya, E. G.; Tsentalovich, Y. P.;
Reznikov, V. A.; Clanton, T. L.; Khramtsov, V. V. J. Phys. Chem. B
2004, 108, 9315.
r
10.1021/ol1031393
Published on Web 01/27/2011
2011 American Chemical Society