pressure.3 The development of highly efficient, selective,
and environmentally benign methods to construct this
fused cyclic structure has received much attention in the
chemical community.4 Compared with many nonasym-
metric procedures, however, catalytic asymmetric ap-
proaches to 4-aminobenzopyrans are relatively rare.5
Notably, Rueping and co-workers recently reported an
elegant example of enantioselective Mannich-ketaliza-
tion reactions to provide 4-aminobenzopyrans in high
enantioselectivities, albeit with fair diastereoselectivities.6
Despite advances, the search for new catalytic asym-
metric methods to form polysubstituted 4-aminobenzo-
pyrans, especially with multiple consecutive stereocenters,
is still highly desirable.
During the past decades, organocatalytic cascade/dom-
ino reactions have emerged as a powerful synthetic tool for
the construction of multiple carbon-carbon or carbon-
heteroatom bonds in a single operation.7 In this regard,
Michael addition initiated Michael-Michael addition cas-
cade was identified as a useful strategy to make complex
molecules.8 Although there are many reports on organo-
catalytic asymmetric aza-Michael addition reactions, to
our knowledge, enantioselective aza-Michael-Michael
cascade reactions remain largely unexplored.9 As part
of our ongoing research program addressing carba- and
heterocycle-orientedmethodology development,10 we here-
in wish to disclose a mild and efficient organocatalyzed
asymmetric cascade aza-Michael-Michael addition reac-
tion of anilines withnitroolefin enoates. This novel method
allows an efficient and straightforward formation of two
carbon-carbon bonds and three consecutive stereocenters
(including one quaternary stereocenter) in one operation
with high yields (up to 96%) and excellent stereoselectiv-
ities (up to >99% ee, mostly >95:5 dr).
Scheme 1. Proposed Reaction Pathway for the Cascade
Sequence
(5) One example describes the conversion of chiral 4-chromanols into
the corresponding amino derivatives. See: Burgard, A.; Lang, H.-J.;
Gerlach, U. Tetrahedron 1999, 55, 7555.
(6) Rueping, M.; Lin, M.-Y. Chem.;Eur. J. 2010, 16, 4169. During
the preparation of this work, Ricci and co-workers reported a catalytic
asymmetric inverse-electron-demand [4 þ 2] cycloaddition of salicyla-
dimines with electron-rich alkenes to synthesize the 4-aminobenzopyran
derivatives. See: Bernardi, L.; Comes-Franchini, M.; Fochi, M.; Leo, V.;
Mazzanti, A.; Ricci, A. Adv. Synth. Catal. 2010, 362, 3399.
(7) (a) Tietze, L. F.; Gordon, B.; Kersten, G. M., Eds. Domino
Reactions in Organic Synthesis: Wiley-VCH, Weinheim, Germany, 2006.
For selected reviews on cascade (domino) reactions, see: (b) Hussian, M. M.;
Patrick, J. W. Acc. Chem. Res. 2008, 41, 883. (c) Li, Z.-G.; Chad, B.; He,
Our designed approach to chiral 4-aminobenzopyrans is
described in Scheme 1. Mechanistically, the chiral bifunc-
tional thiourea catalyst VI activated nitroolefin enoates
through multiple hydrogen-bonding interactions while its
basic tertiary amino site activated the nucleophilic ani-
lines.11 The intermolecular aza-Michael reaction of ni-
troolefin enoates proceeded through Si-face attack,
followed by the intramolecular Michael addition through
Re-face attack, to form highly functionalized 4-aminoben-
zopyrans.
€
C. Chem. Rev. 2008, 108, 3239. (d) Enders, D.; Grondal, C.; Huttl,
M. R. M. Angew. Chem., Int. Ed. 2007, 46, 1570. (e) Guo, H.; Ma, J.
Angew. Chem., Int. Ed. 2006, 45, 354. (f) Pellissier, H. Tetrahedron 2006,
62, 2143. (g) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew.
Chem., Int. Ed. 2006, 45, 7134. (h) Tietze, L. F.; Rackelmann, N. Pure
Appl. Chem. 2004, 76, 1967.
(8) For an excellent review of cacade Michael/Michael reaction, see:
(a) Ihara, M.; Fukumoto, K. Angew. Chem., Int. Ed. 1993, 32, 1010. For
selected examples of organocatalytic cascade Michael-Michael reac-
tions, see:(b) Wang, X.-F.; Hua, Q.-L.; Cheng, Y.; An, X.-L.; Yang, Q.-
Q.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2010, 49, 8379. (c)
Wang, J.; Xie, H.; Li, H.; Zu, L.; Wang, W. Angew. Chem., Int. Ed. 2008,
47, 4177. (d) Sriramurthy, V.; Barcan, G. A.; Kwon, O. J. Am. Chem.
Soc. 2007, 129, 12928. (e) Sun, X.; Sengupta, S.; Petersen, J. L.; Wang,
H.; Lewis, J. P.; Shi, X.-D. Org. Lett. 2007, 9, 4495. (f) Li, H.; Zu, L.; Xie,
H.; Wang, J.; Jiang, W.; Wang, W. Angew. Chem., Int. Ed. 2007, 46,
3732. (g) Li, H.; Zu, L. S.; Xie, H. X.; Wang, J.; Jiang, W.; Wang., W.
Org. Lett. 2007, 9, 1833. (h) Hoashi, Y.; Yabuta, T.; Yuan, P.; Miyabe,
H.; Takemoto, Y. Tetrahedron 2006, 62, 365.
To examine the feasibility of the proposed aza-Michael-
Michael addition cascade of anilines with nitroolefin
enoates, the reaction was initially performed in CH2Cl2
at room temperature in the presence of bifunctional
(9) For a review on organocatalytic aza-Michael additions, see: (a)
Enders, D.; Wang, C.; Liebich, J. X. Chem.;Eur. J. 2009, 15, 11058.
There is only one example of organocatalytic asymmetric aza-
Michael-Michael addition reactions, see:(b) Li, H.; Zu, L.-S.; Xie,
H.-X.; Wang, J.; Wang, W. Chem. Commun. 2008, 5636.
(10) (a) Lu, L.-Q.; Zhang, J.-J.; Li, F.; Cheng, Y.; An, J.; Chen, J.-R.;
Xiao, W.-J. Angew. Chem., Int. Ed. 2010, 49, 4495. (b) Wang, X.-F.;
Chen, J.-R.; Cao, Y.-J.; Cheng, H.-G.; Xiao, W.-J. Org. Lett. 2010, 12,
1140. (c) Lu, L.-Q.; Li, F.; An, J.; Zhang, J.-J.; An, X.-L.; Hua, Q.-L.;
Xiao, W.-J. Angew. Chem., Int. Ed. 2009, 48, 9542. (d) Chen, C.-B.;
Wang, X.-F.; Cao, Y.-J.; Cheng, H.-G.; Xiao, W.-J. J. Org. Chem. 2009,
74, 3532. (e) Lu, L.-Q.; Cao, Y.-J.; Liu, X.-P.; An, J.; Yao, C.-J.; Ming,
Z.-H.; Xiao, W.-J. J. Am. Chem. Soc. 2008, 130, 6946. (f) Chen, J.-R.; Li,
C.-F.; An, X.-L.; Zhang, J.-J.; Zhu, X.-Y.; Xiao, W.-J. Angew. Chem.,
Int. Ed. 2008, 47, 2489. (g) Li, C.-F.; Liu, H.; Liao, J.; Cao, Y.-J.; Liu, X.-
P.; Xiao, W.-J. Org. Lett. 2007, 9, 1847.
(11) Reviews on bifunctional Cinchona alkaloid amino thiourea
catalysis: (a) Connon, S. J. Chem. Commun. 2008, 2499. (b) Marcelli,
T.; Maarseveen, J. H.; Van; Hiemstra, H. Angew. Chem., Int. Ed. 2006,
45, 7496. For selected examples, see:(c) Liu, X.-Q.; Lu, Y.-X. Org. Lett.
2010, 12, 5592. (d) Liu, X.-Q.; Lu, Y.-X. Org. Biomol. Chem. 2010, 8,
4063. (e) Gioia, C.; Hauville, A.; Bernardi, L.; Fini, F.; Ricci, A. Angew.
Chem., Int. Ed. 2008, 47, 9236. (f) Wang, B.; Wu, F.; Wang, Y.; Liu, X.;
Deng, L. J. Am. Chem. Soc. 2007, 129, 768. (g) Biddle, M. M.; Lin, M.;
Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 3830. (h) Zu, L.-S.; Wang, J.;
Li, H.; Xie, H.-X.; Jiang, W.; Wang, W. J. Am. Chem. Soc. 2007, 129,
1036. (i) Zu, L.; Xie, H.; Li, H.; Wang, J.; Jiang, W.; Wang, W. Adv.
Synth. Catal. 2007, 349, 1882. (j) Wang, Y.; Liu, X.-F.; Deng, L. J. Am.
Chem. Soc. 2006, 128, 3928. (k) Rueping, M.; Antonchick, A. P.;
Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683. (l) Itoh, J.;
Fuchibe, K.; Akiyama, T. Angew. Chem., Int. Ed. 2006, 45, 4796.
Org. Lett., Vol. 13, No. 4, 2011
809