Journal of the American Chemical Society
COMMUNICATION
Scheme 6. Enantioselective Coupling Using (R,R)-DIOP as
the Ligand
Leahy, D. K.; Slieker, L. M. Tetrahedron: Asymmetry 2003, 14, 3613–
3618.
(5) For ruthenium- and copper-catalyzedmethods, see: (a) Onitsuka,
K.; Okuda, H.; Sasai, H. Angew. Chem., Int. Ed. 2008, 47, 1454–1457.
(b) Kanbayashi, N.; Onitsuka, K. J. Am. Chem. Soc. 2010, 132, 1206–1207.
(c) Guzman-Martinez, A.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132,
10634–10637. (d) Geurts, K.; Fletcher, S. P.; Feringa, B. L. J. Am. Chem.
Soc. 2006, 128, 15572–15573.
(6) For examples applying enantioenriched allylic esters in synthesis,
see: (a) Stivala, C. E.; Zakarian, A. J. Am. Chem. Soc. 2008, 130, 3774–
3776. (b) Crimmins, M. T.; Jacobs, D. L. Org. Lett. 2009, 11, 2695–2698.
(c) Shimizu, Y.; Shi, S.-L.; Usuda, H.; Kanai, M.; Shibasaki, M. Angew.
Chem., Int. Ed. 2010, 49, 1103–1106.
furnished 1a in moderate 42% yield with a promising enantios-
electivity of 70% ee (Scheme 6), demonstrating the potential for
asymmetric catalysis.
(7) For mercury- and selenium-catalyzed reactions, see: (a) Rappo-
port, Z.; Winstein, S.; Young, W. G. J. Am. Chem. Soc. 1972, 94, 2320–
2329. (b) Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1972, 94, 7154–
7155. (c) Sharpless, K. B.; Lauer, R. F. J. Org. Chem. 1974, 39, 429–430.
(8) For palladium-catalyzed reactions, see: (a) Chen, M. S.; White,
M. C. J. Am. Chem. Soc. 2004, 126, 1346–1347. (b) Chen, M. S.;
Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127,
6970–6971. (c) Mitsudome, T.; Umetani, T.; Nosaka, N.; Mori, K.;
Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew. Chem., Int. Ed. 2006, 45,
481–485. (d) Covell, D. J.; White, M. C. Angew. Chem., Int. Ed. 2008, 47,
6448–6451. (e) Stang, E. M.; White, M. C. Nat. Chem. 2009, 1, 547–551.
(f) Vermeulen, N. A.; Delcamp, J. H.; White, M. C. J. Am. Chem. Soc.
2010, 132, 11323–11328. (g) Thiery, E.; Aouf, C.; Belloy, J.; Harakat,
D.; Le Bras, J.; Muzart, J. J. Org. Chem. 2010, 75, 1771–1774. (h)
Henderson, W. H.; Check, C. T.; Proust, N.; Stambuli, J. P. Org. Lett.
2010, 12, 824–827. (i) Campbell, A. N.; White, P. B.; Guzei, I. A.; Stahl,
S. S. J. Am. Chem. Soc. 2010, 132, 15116–15119.
In summary, we have developed an efficient method for the
first redox-neutral propargylic CH activation of terminal alkynes
and their coupling with carboxylic acids under rhodium catalysis
to furnish valuable branched allylic esters. This simple atom- and
redox-economic procedure is compatible with many functional
groups and tolerates substantial structural variation on both the
alkyne and the carboxylic acid reaction partner. Future studies
will address the extension of this propargylic activation mode to
coupling with other nucleophiles and the elaboration of intra-
molecular and enantioselective variants.
’ ASSOCIATED CONTENT
S
Supporting Information. Detailed experimental proce-
b
(9) For copper-catalyzed reactions, see: (a) Malkov, A. V.; Bella, M.;
Langer, V.; Koꢀcovskꢁy, P. Org. Lett. 2000, 2, 3047–3049. (b) Eames, J.;
Watkinson, M. Angew. Chem., Int. Ed. 2001, 40, 3567–3571. (c) Le Bras,
J.; Muzart, J. Tetrahedron Lett. 2002, 43, 431–433. (d) Fache, F.; Piva, O.
Synlett 2002, 2035–2036. (e) Andrus, M. B.; Zhou, Z. J. Am. Chem. Soc.
2002, 124, 8806–8807.
dures and spectral data for new compounds, including scanned
images of 1H and 13C NMR spectra. This material is available free
’ AUTHOR INFORMATION
(10) For a related palladium-catalyzed reaction using special pro-
pargylic acetates with internal alkyne functions, see: Trost, B. M.;
Brieden, W.; Baringhaus, K. H. Angew. Chem., Int. Ed. Engl. 1992, 31,
1335–1336.
Corresponding Author
(11) For related palladium-catalyzed examples using aromatic
alkynes and nitrogen or carbon nucleophiles, see: (a) Kadota, I.; Shibuya,
A.; Gyoung, Y. S.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 10262–
10263. (b) Kadota, I.; Shibuya, A.; Lutete, L. M.; Yamamoto, Y. J. Org.
Chem. 1999, 64, 4570–4571. (c) Narsireddy, M.; Yamamoto, Y. J. Org.
Chem. 2008, 73, 9698–9709.
(12) Trost, B. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 259–281.
(13) For a recent review of the concept of redox economy, see:
Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem., Int. Ed. 2009,
48, 2854–2867.
’ ACKNOWLEDGMENT
This work was supported by the DFG, the International
Research Training Group “Catalysts and Catalytic Reactions
for Organic Synthesis” (IRTG 1038), the Fonds der Chemischen
Industrie, the Krupp Foundation (Alfried Krupp Award for
Young University Teachers to B.B.), and the Humboldt Founda-
tion (postdoctoral fellowship to N.R.V.). We thank Umicore,
BASF, and Wacker for generous gifts of chemicals.
(14) Lumbroso, A.; Vautravers, N. R.; Breit, B. Org. Lett. 2010, 12,
5498–5501.
’ REFERENCES
(15) For more details on ligand and metal salt screening as well as on
optimization of the reaction conditions, see the Supporting Information.
(16) The branched product B and the Markovnikov adduct M can be
separated by chromatography on AgNO3-impregnated silica gel. For
example, the products 1b, 10, and 19 were purified using this procedure.
(17) For an iridium-catalyzed addition of carboxylic acids to 1,1-
dimethylallene, see: Kim, I. S.; Krische, M. J. Org. Lett. 2008, 10, 513–
515.
(1) Hodgson, D. M.; Humphreys, P. G. In Science of Synthesis:
Houben-Weyl Methods of Molecular Transformations; Clayden, J. P.,
Ed.; Thieme: Stuttgart, Germany, 2007; Vol. 36, pp 583-665.
(2) For methods based on palladium catalysts, see: (a) Trost, B. M.;
Organ, M. G. J. Am. Chem. Soc. 1994, 116, 10320–10321. (b) Trost,
B. M. J. Org. Chem. 2004, 69, 5813–5837. (c) Trost, B. M.; Crawley,
M. L. Chem. Rev. 2003, 103, 2921–2943. (d) Cannon, J. S.; Kirsch, S. F.;
Overman, L. E. J. Am. Chem. Soc. 2010, 132, 15185–15191.
(18) Bianchini, C.; Meli, A.; Peruzzini, M.; Zanobini, F.; Bruneau, C.;
Dixneuf, P. H. Organometallics 1990, 9, 1155–1160.
(19) This step seems irreversible under our reaction conditions.
Subjection of branched allylic ester product B to our reaction conditions
did not furnish any trace of the gem-enol ester M.
(20) (a) Hayashi, T.; Okada, A.; Suzuka, T.; Kawatsura, M. Org. Lett.
2003, 5, 1713–1715. (b) Polet, D.; Alexakis, A.; Tissot-Croset, K.;
Corminboeuf, C.; Ditrich, K. Chem.—Eur. J. 2006, 12, 3596–3609.
(3) For methods based on iridium catalysts, see: (a) Shu, C.;
Hartwig, J. F. Angew. Chem., Int. Ed. 2004, 43, 4794–4797. (b)
Helmchen, G.; Dahnz, A.; D€ubon, P.; Schelwies, M.; Weihofen, R.
Chem. Commun. 2007, 675–691. (c) Ueno, S.; Hartwig, J. F. Angew.
Chem., Int. Ed. 2008, 47, 1928–1931. (d) Stanley, L. M.; Bai, C.; Ueda,
M.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 8918–8920.
(4) For methods based on rhodium catalysts, see: (a) Evans, P. A.;
Leahy, D. K. J. Am. Chem. Soc. 2002, 124, 7882–7883. (b) Evans, P. A.;
2388
dx.doi.org/10.1021/ja1108613 |J. Am. Chem. Soc. 2011, 133, 2386–2389