Organic Letters
Letter
Crystallographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, U.K.; fax: +44 1223 336033.
Scheme 4. Proposed Mechanisms for Formation of Allenyl
Thiocyanate 4 and Allenyl Trifluoromethylthioether 5
AUTHOR INFORMATION
Corresponding Author
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful for financial support from the Science and
Technology Commission of Shanghai Municipality (No.
15ZR1410500) and the sponsorship from the National Natural
Science Foundation of China (No. 21402052).
adding AgSCF3 and DTBP, the Ag+ ion is oxidized to Ag2+ ion
with DTBP (eq 4 in Scheme 4). AgII facilitates abstraction of
the −SCN anion, resulting in the formation of allenyl
carbocation 7 (eq 5 in Scheme 4). The −SCF3 then reacts
with allenyl carbocation 7 to afford the desired allenyl
trifluorothioether 5 (eq 6 in Scheme 4). We could not rule
out that AgII −SCN might transform to Ag+ and SCN radical,
which might terminate the radical translation with another SCN
radical or OtBu radical.
In conclusion, a safe, convenient, and highly efficient cascade
reaction of propargyl amines, AgSCF3, and KBr was developed,
affording a series of trisubstituted allenes bearing a thiocyanate
functional group. This transformation proceeds at room
temperature and gives the allene products in high yields. The
reaction proceeds through in situ formation of isothiocyanate
intermediates, followed by a [3,3] sigmatropic rearrangement.
In addition, a “one-pot” reaction of propargyl amines bearing
electro-rich aryl substituents at 1-position with AgSCF3, KBr,
and di-tert-butyl peroxide afforded trisubstituted allenes bearing
a trifluoromethylthio group in moderate to good yields. The
proposed allenyl carbocation intermediate was detected by ESI-
MS to rationalize the high regioselectivity. Allenyl thiocyanates
bearing electron-neutral and electron-poor phenyl substituents
at the 3-position could also be transformed to the
corresponding allenyl trifluoromethylthioethers through treat-
ment with Me3SiCF3 and TBAF in THF. This report represents
the first synthesis of allenyl trifluoromethylthioether com-
pounds.
REFERENCES
■
(1) For selected reviews of allenes and their preparation, see:
(a) Hoffmann-Roder, A.; Krause, N. Angew. Chem., Int. Ed. 2004, 43,
̈
1196−1216. (b) RiveraFuentes, P.; Diederich, F. Angew. Chem., Int. Ed.
2012, 51, 2818−2828. (c) Yu, S.; Ma, S. Chem. Commun. 2011, 47,
5384−5418. (d) Neff, R. K.; Frantz, D. E. ACS Catal. 2014, 4, 519−
528. (e) Ye, J.; Ma, S. Org. Chem. Front. 2014, 1, 1210−1224.
(2) For selected reviews on the reactivity of allenes, see: (a) Krause,
N.; Hashmi, A. S. K. Modern Allene Chemistry; Wiley−VCH:
Weinheim, Germany, 2004. (b) Tius, M. A. Science of Synthesis, Vol.
44; Thieme: Stuttgart, Germany, 2007; pp 353−394. (c) Ma, S. Acc.
Chem. Res. 2009, 42, 1679−1688. (d) Yu, S.; Ma, S. Angew. Chem., Int.
Ed. 2012, 51, 3074−3112. (e) Allen, A. D.; Tidwell, T. T. Chem. Rev.
2013, 113, 7287−7342. (f) Ye, J.; Ma, S. Acc. Chem. Res. 2014, 47,
989−1000.
(3) For selected examples, see: (a) Houmam, A.; Hamed, E. M.; Still,
L. W. J. J. Am. Chem. Soc. 2003, 125, 7258−7265. (b) Elhalem, E.;
Bailey, B. N.; Docampo, R.; Ujvary, I.; Szajnman, S. H.; Rodriguez, J.
B. J. Med. Chem. 2002, 45, 3984−3999. (c) Szajnman, S. H.; Yan, W.;
Bailey, B. N.; Docampo, R.; Elhalem, E.; Rodriguez, J. B. J. Med. Chem.
2000, 43, 1826−1840.
(4) See: (a) Jiang, G.; Zhu, C.; Li, J.; Wu, W.; Jiang, H. Adv. Synth.
Catal. 2017, 359, 1208−1212 , ref 5-12. (b) Lei, W.-L.; Wang, T.;
Feng, K.-W.; Wu, L.-Z.; Liu, Q. ACS Catal. 2017, 7, 7941−7945.
(5) Castanheiro, T.; Suffert, J.; Donnard, M.; Gulea, M. Chem. Soc.
Rev. 2016, 45, 494−505.
(6) (a) Banert, K.; Hagedorn, M.; Muller, A. Eur. J. Org. Chem. 2001,
̈
2001, 1089−1103. (b) Kitamura, T.; Miyake, S.; Kobayashi, S.;
Taniguchi, H. Bull. Chem. Soc. Jpn. 1989, 62, 967−968. (c) Zbiral, E.;
Hengstberger, H. Monatsh. Chem. 1968, 99, 412−428.
(7) (a) Manteau, B.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. J. Fluorine
Chem. 2010, 131, 140−158. (b) Leroux, F.; Jeschke, P.; Schlosser, M.
Chem. Rev. 2005, 105, 827−856. (c) Leo, A.; Hansch, C.; Elkins, D.
Chem. Rev. 1971, 71, 525−616. (d) Hansch, C.; Leo, A.; Taft, R. W.
Chem. Rev. 1991, 91, 165−195.
(8) For selected examples, see: (a) Liu, J.-B.; Xu, X.-H.; Chen, Z.-H.;
Qing, F.-L. Angew. Chem., Int. Ed. 2015, 54, 897−900. (b) Pan, S.;
Huang, Y.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2017, 19, 4624−4627.
(c) Zeng, J.-L.; Chachignon, H.; Ma, J.-A.; Cahard, D. Org. Lett. 2017,
19, 1974−1977. (d) Li, M.; Petersen, J. L.; Hoover, J. M. Org. Lett.
2017, 19, 638−641. (e) Wu, W.; Dai, W.; Ji, X.; Cao, S. Org. Lett.
2016, 18, 2918−2921. (f) Wu, H.; Xiao, Z.; Wu, J.; Guo, Y.; Xiao, J.-
C.; Liu, C.; Chen, Q.-Y. Angew. Chem., Int. Ed. 2015, 54, 4070−4074.
(g) Guo, S.; Zhang, X.; Tang, P. Angew. Chem., Int. Ed. 2015, 54,
4065−4069. (h) Potash, S.; Rozen, S. J. Fluorine Chem. 2014, 168,
173−176. (i) Xu, C.; Ma, B.; Shen, Q. Angew. Chem., Int. Ed. 2014, 53,
9316−9320.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures and spectroscopic character-
ization data, 1H and 13C NMR spectra of the new
Accession Codes
CCDC 1588662 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
D
Org. Lett. XXXX, XXX, XXX−XXX