Binding of HgCl2 by a Functionalized Tripodal Receptor
[HL+]·[ClO4 ] (4): Colourless crystals; yield of crystallization: 75%
–
Acknowledgments
(58 mg) based on [L·HgCl2]; mp: 181 °C; 1H NMR (400 MHz,
[D6]DMSO): δ = 3.89 (s, 6 H, NCH2), 4.55 (s, 6 H, OCH2), 7.15
(t, J = 7.8 Hz, 3 H, ArH), 7.32 (d, J = 8.4 Hz, 3 H, ArH), 7.66 (t,
J = 7.6 Hz, 3 H, ArH), 7.86 (d, J = 8.0 Hz, 3 H, ArH) ppm. IR
G. D. acknowledges the Department of Science and Technology
(DST), Grant No. SR/S1/IC-01/2008 and the Council of Scientific
and Industrial Research (CSIR), Grant No. 01-2235/08/EMR-II,
New Delhi, India for financial support and DST-FIST for single-
crystal X-ray diffraction measurements. S. K. D. acknowledges IIT
Guwahati, India for a fellowship.
(KBr disk): ν = 1085, 1274, 1526, 1609, 3110 cm–1. C H ClN O
˜
24 25
4
13
(612.93): calcd. C 47.02, H 4.11, N 9.14; found C 46.84, H 4.42, N
9.26.
[HL+]·[0.5SiF6–2] (5): Colourless crystals; yield of crystallization:
76% (110 mg) based on [L·HgCl2]; mp: 207 °C; 1H NMR
(400 MHz, [D6]DMSO): δ = 4.39 (s, 6 H, OCH2), 7.12 (t, J =
7.6 Hz, 3 H, ArH), 7.34 (d, J = 8.4 Hz, 3 H, ArH), 7.65 (t, J =
7.2 Hz, 3 H, ArH), 7.86 (d, J = 8.0 Hz, 3 H, ArH) ppm. IR (KBr
[1] a) D. J. Cram, Science 1983, 219, 1177–1182; b) R. Warmuth,
J. Yoon, Acc. Chem. Res. 2001, 34, 95–105; c) J. Rebek Jr., Acc.
Chem. Res. 1999, 32, 278–286; d) A. Shivanyuk, J. Rebek Jr.,
J. Am. Chem. Soc. 2002, 124, 12074–12075; e) T. Amaya, J.
Rebek Jr., Chem. Commun. 2004, 1802–1803; f) A. S. Singh,
P. K. Bharadwaj, Dalton Trans. 2008, 738–741; g) S. Rieth, Z.
Yan, S. Xia, M. Gardlik, A. Chow, G. Fraenkel, C. M. Hadad,
J. D. Badjic, J. Org. Chem. 2008, 73, 5100–5109; h) A. Kumar,
S.-S. Sun, A. J. Lees, Coord. Chem. Rev. 2008, 252, 922–939.
[2] a) A. Bianchi, K. Bowman-James, E. Garcia-Espana, Supra-
molecular Chemistry of Anions; Wiley-VCH, Weinheim, Ger-
many, 1997; b) S. S. Zhu, H. Staats, K. Brandhorst, J. Grunen-
berg, F. Gruppi, E. Dalcanale, A. Lutzen, K. Rissanen, C. A.
Schalley, Angew. Chem. Int. Ed. 2008, 47, 788–792; c) M. J.
Chmielewski, L. Zhao, A. Brown, D. Curiel, M. R. Sambrook,
A. L. Thompson, S. M. Santos, V. Felix, J. J. Davis, P. D. Beer,
Chem. Commun. 2008, 3154–3156; d) M. D. Lankshear, P. D.
Beer, Acc. Chem. Res. 2007, 40, 657–665; e) N. Gimeno, R.
Vilar, Coord. Chem. Rev. 2006, 250, 3161–3189; f) . S. J. Coles,
J. G. Frey, P. A. Gale, M. B. Hursthouse, M. E. Light, K. Na-
vakhun, G. L. Thomas, Chem. Commun. 2003, 568–569; g) J. L.
Atwood, A. Szumna, Chem. Commun. 2003, 940–941; h) R. L.
Paul, Z. R. Bell, J. C. Jeffery, J. A. McCleverty, M. D. Ward,
Proc. Natl. Acad. Sci. USA 2002, 99, 4883–4888; i) D. Rais, J.
Yau, D. M. P. Mingos, R. Vilar, A. J. P. White, D. J. Williams,
Angew. Chem. Int. Ed. 2001, 40, 3464–3467; j) R. Vilar,
D. M. P. Mingos, A. J. P. White, D. J. Williams, Angew. Chem.
Int. Ed. 1998, 37, 1258–1262.
disk): ν = 1274, 1528, 1607, 3436 cm–1. C H F N O Si
(584.52): calcd. C 50.53, H 4.42, N 9.82; found C 50.84, H 4.22, N
9.48.
˜
24 25
3
4
9
0.5
Single-Crystal X-ray Studies: The crystallographic data and details
of data collection and refinement for [L·HgCl2] and 1–5 are given
in Table S1 in the Supporting Information. In each case, a single
crystal of suitable size was selected from the mother liquor at room
temp. immersed in Paratone oil and then mounted on the tip of a
glass fibre and cemented using epoxy resin. The intensity data were
collected using a Bruker SMART APEX-II CCD diffractometer,
equipped with a fine focus 1.75 kW sealed tube Mo-Kα radiation
(λ = 0.71073 Å) at 298(3) K, with increasing ω (width of 0.3° per
frame) at a scan speed of 6 s/frame. SMART software was used for
data acquisition. Data integration and reduction were undertaken
with SAINT and XPREP[15] software. Multiscan empirical absorp-
tion corrections were applied to the data using the program SAD-
ABS.[16] Structures were solved by direct methods using SHELXS-
97[17] and refined with full-matrix least-squares on F2 using
SHELXL-97.[18] All non-hydrogen atoms were refined anisotropi-
cally. Hydrogen atoms attached to all carbon atoms were geometri-
cally fixed whereas the hydrogen atoms of the tertiary amino nitro-
gen of the salts were located from the difference Fourier map, and
the positional and temperature factors are refined isotropically.
However, we were unable to locate the hydrogen atoms of the lattice
water molecule in 3 from the difference Fourier map. Structural
illustrations have been generated using ORTEP-3[19] and MER-
CURY 1.3[20] for Windows.
1H NMR Titration Experiments: Binding constants were obtained
by 1H NMR (400 MHz, Bruker) titrations of [HL+]·[Ts] with tetra-
butylammonium salts in CDCl3 at 25 °C. The initial concentration
of receptor was 5 mm. Aliquots of anions were added from a stock
solution 15 mm of anions. TMS in CDCl3 was used as an internal
reference, and each titration was performed by 10 measurements at
room temperature. All the proton signals were referred to TMS.
Association constants were calculated by fitting the change in the
N–CH2 chemical shift with a 1:1 association model with nonlinear
least square analysis. WINEQNMR 2.0 was employed in the calcu-
lation of association constants.[21] The error limit in K was about
10%.
[3] a) D. H. Busch, N. A. Stephenson, Coord. Chem. Rev. 1990,
100, 119–154; b) S. Anderson, H. L. Anderson, J. K. M. San-
ders, Acc. Chem. Res. 1993, 26, 469–475; c) R. Vilar, Angew.
Chem. Int. Ed. 2003, 42, 1460–1477.
[4] a) A. S. Singh, P. K. Bharadwaj, Dalton Trans. 2008, 738–741;
b) A. S. Singh, B. Chen, Y. Wen, C. Tsai, S. Sun, Org. Lett.
2009, 11, 1867–1870.
[5] a) M.-R. Huang, X.-G. Li, Chem. Eur. J. 2007, 13, 6009–6018,
and references cited therein; b) L. Praveen, G. R. Thirumalai,
T. Sreeja, M. L. P. Reddy, R. L. Varma, Inorg. Chem. 2007, 46,
6277–6282; c) G. K. Patra, I. Goldberg, Polyhedron 2002, 21,
2195–2199; d) D. C. Bebout, S. W. Stokes, R. J. Butcher, Inorg.
Chem. 1999, 38, 1126–1133; e) D. A. House, W. T. Robinson,
V. M c Ke e, Coord. Chem. Rev. 1994, 135/136, 533–585; f) G. A.
Bowmaker, B. Assadollahzadeh, A. M. Brodie, E. W. Ain-
scough, G. H. Freeman, G. R. Jameson, Dalton Trans. 2005,
1602–1612; g) D. G. Morris, K. W. Muir, C. O. W. Chii, Polyhe-
dron 2003, 22, 3345–3353.
[6] a) A. Oehmen, R. Viegas, S. Velizarov, M. A. M. Reis, J. G.
Crespo, Desalination 2006, 199, 405; b) A. Kowalski, Metals
Removal to Low Levels Using Precipitants, presented at the
AESF/EPA Conference, Orlando, FL, January 28–30, 2002.
[7] M. Arunachalam, P. Ghosh, Chem. Commun. 2009, 3184–3186.
[8] a) A. Pramanik, S. Majumdar, G. Das, CrystEngComm 2010,
12, 250; b) S. K. Dey, B. Ojha, G. Das, Cryst. Eng. Commun.
2010; DOI: 10.1039/c0ce00316f.
The following equation was used to determine K values, where A
and R are the anion and [HL+]·[Ts], respectively.
Δδ = {([A]0 + [R]0 + 1/K) +/– (([A]0 + [R]0 + 1/R)2 – 4[R]0[A]0)1/2}-
Δδmax/2[R]0
Supporting Information (see also the footnote on the first page of
this article): Further crystallographic details involving tables of the
crystal structure determination, selected hydrogen bond parameters
and selected torsion angles, H NMR spectra and titrations, ther-
mal ellipsoid plots (50% probability model) of complexes 1–5 and
[9] a) P. S. Lakshminarayanan, I. Ravikumar, E. Suresh, P. Ghosh,
Inorg. Chem. 2007, 46, 4769–4771; b) A. Pramanik, M. Bhu-
yan, R. Choudhury, G. Das, J. Mol. Struct. 2008, 879, 88–95;
c) M. A. Hossain, J. A. Liljegren, D. Powell, K. Bowman-
James, Inorg. Chem. 2004, 43, 3751–3755.
1
packing diagrams.
Eur. J. Inorg. Chem. 2011, 429–438
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
437