T.-C. Lin et al.
FULL PAPER
Model Compound 2:
A mixture of compound 9 (0.44 g,
Acknowledgments
0.00137 mol), 10 (2.85 g, 0.00453 mol), [Pd(OAc)2] (0.0185 g,
0.000082 mol), and P(o-tolyl)3 (0.1 g, 0.0003288 mol) in a mixed
solvent system composed of NEt3/MeCN (5 mL/10mL) was stirred
in a sealed pressure tube at 110 °C for 48 h. After cooling to r.t.,
CH2Cl2 (50 mL) was added and the reaction mixture was stirred
for 15 min. The resulting solution was filtered and the filtrate was
concentrated by evaporation. The crude product was purified by
column chromatography on silica gel (ethyl acetate/hexane, 1:100)
to give the final purified product as a yellow solid (1.0 g, 40%). 1H
NMR (200 MHz, CDCl3): δ = 7.70–7.62 (m, 6 H), 7.57–7.46 (m, 6
H), 7.38–7.26 (m, 12 H), 7.24–7.04 (m, 9 H), 7.00–6.9 (m, 6 H),
1.95 (br., 12 H), 1.05 (br., 36 H), 0.76–0.73 (m, 30 H) ppm. 13C
NMR (50 MHz, CDCl3): δ = 151.25, 151.11, 150.96, 140.83,
136.46, 132.43, 127.37, 126.95, 126.74, 125.36, 124.30, 123.43,
122.85, 120.61, 119.62, 119.23, 54.96, 40.47, 29.72, 23.74, 22.57,
12.03 ppm. 13C NMR (200 MHz, CDCl3): δ = 153.16, 150.87,
146.61, 139.84, 139.56, 136.92, 132.30, 132.25, 129.91, 127.82,
126.10, 125.53, 124.21, 55.31, 40.35, 31.51, 29.63, 23.69, 22.56,
13.99 ppm. HRMS-FAB: calcd. for C135H144N4 [M]+ 1821.1391;
found 1821.1343.
We thank the National Science Council (NSC), Taiwan for finan-
cial support.
[1] M. Göppert-Mayer, Ann. Phys. 1931, 9, 273–295.
[2] W. Kaiser, C. G. B. Garret, Phys. Rev. Lett. 1961, 7, 229–231.
[3] For recent reviews, see: a) M. Pawlicki, H. A. Collins, R. G.
Denning, H. L. Anderson, Angew. Chem. Int. Ed. 2009, 48,
3244–3266; b) M. Rumi, S. Barlow, J. Wang, J. W. Perry, S. R.
Marder, Adv. Polym. Sci. 2008, 213, 97–156; c) C. W. Spangler,
J. Mater. Chem. 1999, 9, 2013–2020; d) G. S. He, L.-S. Tan, Q.
Zheng, P. N. Prasad, Chem. Rev. 2008, 108, 1245–1330; e) T.-
C. Lin, S.-J. Chung, K.-S. Kim, X. Wang, G. S. He, J. Swiatkie-
wicz, H. E. Pudavar, P. N. Prasad, Adv. Polym. Sci. 2003, 161,
157–193.
[4] For selected examples, see: a) M. Albota, D. Beljonne, J.-L.
Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Ko-
gej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W.
Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X.-
L. Wu, C. Xu, Science 1998, 281, 1653–1656; b) M. Rumi, J. E.
Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D.
McCord-Maughon, T. C. Parker, H. Röel, S. Thayumanavan,
S. R. Marder, D. Beljonne, J.-L. Brédas, J. Am. Chem. Soc.
2000, 122, 9500–9510; c) S.-J. Chung, M. Rumi, V. Alain, S.
Barlow, J. W. Perry, S. R. Marder, J. Am. Chem. Soc. 2005, 127,
10844–10845; d) S.-J. Chung, S. Zheng, T. Odani, L. Beverina,
J. Fu, L. A. Padilha, A. Biesso, J. M. Hales, X. Zhan, K.
Schmidt, A. Ye, E. Zojer, S. Barlow, D. J. Hagan, E. W. V. Stry-
land, Y. Yi, Z. Shuai, G. A. Pagani, J.-L. Bredas, J. W. Perry,
S. R. Marder, J. Am. Chem. Soc. 2006, 128, 14444–14445.
[5] For selected examples, see: a) L. Ventelon, L. Moreaux, J.
Mertz, M. Blanchard-Desce, Chem. Commun. 1999, 2055–
2056; b) L. Ventelon, L. Moreaux, J. Mertz, M. Blanchard-
Desce, Synth. Met. 2002, 127, 17–21; c) O. Mongin, L. Porres,
L. Moreaux, J. Mertz, M. Blanchard-Desce, Org. Lett. 2002, 4,
719–722; d) L. Porres, C. Katan, O. Mongin, T. Pons, J. Mertz,
M. Blanchard-Desce, J. Mol. Struct. 2004, 704, 17–24; e) L.
Porres, O. Mongin, C. Katan, M. Charlot, T. Pons, J. Mertz,
M. Blanchard-Desce, Org. Lett. 2004, 6, 47–50; f) C. Katan, F.
Terenziani, O. Mongin, M. H. V. Werts, L. Porres, T. Pons, J.
Mertz, S. Tretiak, M. Blanchard-Desce, J. Phys. Chem. A 2005,
109, 3024–3037; g) M. Charlot, L. Porres, C. D. Entwistle, A.
Beeby, T. B. Marder, M. Blanchard-Desce, Phys. Chem. Chem.
Phys. 2005, 7, 600–606; h) M. Charlot, N. Izard, O. Mongin,
D. Riehl, M. Blanchard-Desce, Chem. Phys. Lett. 2006, 417,
297–302; i) F. Terenziani, C. L. Droumaguet, C. Katan, O.
Mongin, M. Blanchard-Desce, ChemPhysChem 2007, 8, 723–
734.
[6] For selected examples, see: a) M. Drobizhev, A. Karotki, A.
Rebane, C. W. Spangler, Opt. Lett. 2001, 26, 1081–1083; b) M.
Drobizhev, A. Karotki, Y. Dzenis, A. Rebane, Z. Suo, C. W.
Spangler, J. Phys. Chem. B 2003, 107, 7540–7543; c) M. Drob-
izhev, A. Rebanea, Z. Suoc, C. W. Spangler, J. Lumin. 2005,
111, 291–305; d) M. Drobizhev, F. Meng, A. Rebane, Y. Ste-
panenko, E. Nickel, C. W. Spangler, J. Phys. Chem. B 2006,
110, 9802–9814.
[7] For selected examples, see: a) K. D. Belfield, D. J. Hagan, E. W.
Van Stryland, K. J. Schafer, R. A. Negres, Org. Lett. 1999, 1,
1575–1578; b) K. D. Belfield, A. R. Morales, J. M. Hales, D. J.
Hagan, E. W. V. Stryland, V. M. Chapela, J. Percino, Chem.
Mater. 2004, 16, 2267–2273; c) K. D. Belfield, A. R. Morales,
B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland,
V. M. Chapela, J. Percino, Chem. Mater. 2004, 16, 4634–4641;
d) S. Yao, K. D. Belfield, J. Org. Chem. 2005, 70, 5126–5132;
e) K. D. Belfield, M. V. Bondar, F. E. Hernandez, O. V. Przhon-
ska, J. Phys. Chem. C 2008, 112, 5618–5622.
Model Compound 3:
A mixture of compound 5 (0.53 g,
0.00086 mol), 13 (3.3 g, 0.00284 mol), Bu4NF (1.0 m in THF,
3.9 mL, 0.00387 mol), and [PdCl2(PhCN)2] (0.05 g, 0.000129 mol)
was stirred at 110 °C for 48 h. After cooling to r.t., CH2Cl2 (50 mL)
was added and the reaction mixture was stirred for 20 min. The
resulting solution was filtered and the organic solution was col-
lected and concentrated by rotary evaporation. The crude product
was purified by column chromatography on silica gel (ethyl acetate/
hexane, 1:40) to give the final purified product as a yellow solid
(1.0 g, 35%). 1H NMR (300 MHz, CDCl3): δ = 7.54–7.49 (m, 12
H), 7.28–7.19 (m, 36 H), 7.12–7.08 (m, 32 H), 7.02–6.97 (m, 28 H),
6.72–6.69 (m, 3 H), 1.78 (br., 24 H), 1.15–0.98 (br., 72 H), 0.82–
0.71 (br., 60 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 152.56,
152.32, 150.97, 150.65, 148.04, 147.16, 141.95, 140.24, 139.08,
136.25, 136.13, 132.26, 130.37, 129.15, 126.56, 124.62, 123.78,
123.04, 122.45, 121.56, 120.34, 119.61, 118.64, 54.98, 40.13, 31.83,
29.62, 23.82, 22.51, 14.09 ppm. MALDI-TOF: calcd. for
C
246H267N7 [M + H]+ 3322.80; found 3322.89.
Model Compound 4: mixture of compound
A
9 (0.18 g,
0.00056 mol), 15 (4.35 g, 0.00185 mol), [Pd(OAc)2] (0.0076 g,
0.000034 mol), and P(o-tolyl)3 (0.04 g, 0.000136 mol) in a mixed
solvent system composed of NEt3/MeCN (5 mL/10mL) was stirred
in a sealed pressure tube at 110 °C for 48 h. After cooling to r.t.,
CH2Cl2 (70 mL) was added and the reaction mixture was stirred
for 25 min. The resulting solution was filtered and the filtrate was
concentrated by evaporation. After removing the solvent, the crude
product was purified by column chromatography on silica gel (ethyl
acetate/hexane, 1:10) to give the final purified product as a yellow
solid (1.0 g, 25%). 1H NMR (300 MHz, CDCl3): δ = 7.57–7.48 (m,
24 H), 7.34–7.19 (m, 84 H), 7.15–6.99 (m, 72 H), 6.97–6.91 (m, 60
H), 6.75 (m, 12 H), 1.759 (br., 48 H), 1.13–0.983 (m, 144 H), 0.818–
0.671 (m, 120 H) ppm. 13C NMR (75 MHz, CDCl3): δ = 152.26,
152.03, 150.71, 150.36, 147.72, 146.84, 146.72, 146.03, 145.27,
141.78, 141.61, 139.98, 138.79, 135.97, 135.79, 132.01, 130.14,
128.85, 126.82, 126.26, 125.94, 124.35, 123.93, 123.48, 123.43,
123.07, 122.14, 121.26, 120.06, 119.37, 119.16, 119.37, 54.86, 40.00,
31.31, 29.33, 23.52, 22.26, 13.81 ppm. MALDI-TOF: calcd. for
C534H564N16 [M + H]+ 7207.30; found 7207.51.
Supporting Information (see also the footnote on the first page of
this article): Photophysical methods for the measurement of linear
and nonlinear optical properties.
[8] For selected examples, see: a) Y. Wang, G. S. He, P. N. Prasad,
T. Goodson III, J. Am. Chem. Soc. 2005, 127, 10128–10129; b)
920
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 912–921