inhibitory.17 Moreover, 2-aminopyrroles are precursors
for the synthesis of purine analogues ;pyrrolopyrimidines,
pyrrolotriazines, and pyrrolopyridines.18-24 These
pyrrole-containing heterocycles are widely investigated for
their multiple bioactivities, which, among many others, are
known to include anti-inflammatory,18 anticancer,19 antiv-
iral,20 antifungal,21 adenosine A1 receptor inhibitory,22
adenosine kinase,23 and dihydrofolate reductase24 inhibi-
tory. The pyrrolo[2,3-d]pyrimidine ring system is also a
common motif in several natural products, such as nucleo-
side antibiotics tubercidin, toyocamycin, sangivamycin,25
and marine alkaloids rigidins A, B, C, D, and E.26
Previously, we described a novel method for the synth-
esis of multisubstituted pyrrolines using a multicomponent
reaction of various N-(aryl- and alkylsulfonamido)aceto-
phenones with aldehydes and malononitrile (see Table 1
graphic).27 While the reaction is regioselective, it is not
stereoselective and gives mixtures of cis- and trans-2-
pyrrolines, which are not easily separable. Utilizing this
methodology as a starting point, we developed a new multi-
component one-pot method for the synthesis of diversely
tetra- and pentasubstituted 2-aminopyrroles. In addition,
we utilized the new method for a short total synthesis of
alkaloids rigidins A, B, C, and D.
Pentasubstituted 2-aminopyrroles A1-17 were prepared
by a multicomponent reaction of N-(aryl-, hetaryl-, and
alkylsulfonamido)acetophenones, aldehydes, and cyano-
acetic acidderivatives in acetonitrile, followed by oxidation
withDDQ inone pot (Table1). Thisthree-componentpro-
cess works well for any tested combination of aliphatic,
aromatic (including sterically hindered or heteroaromatic)
aldehydes and malononitrile, cyanoacetamide, or ethyl
cyanoacetate. Because of the lower reactivity of the inter-
mediate Knoevenagel products of cyanoacetamide or ethyl
cyanoacetate, the reactions were sluggish in acetonitrile
(A16 and A17). In these cases the pyrrolines were obtained
in ethanol, the solvent was then evaporated, and the crude
material was redissolved in acetonitrile for the subsequent
oxidation with DDQ. When phenylsulfonyl- or 4-methox-
ybenzoylacetonitriles were used in this reaction, a mixture
of pyrrolines was obtained, which did not undergo oxida-
tion to the corresponding pyrroles.
(3) (a) Balme, G. Angew. Chem., Int. Ed. 2004, 43, 6238–6241.
(b) Balme, G.; Bouyssi, D.; Monteiro, N. Heterocycles 2007, 73, 87–
123. (c) Shiraishi, H.; Nishitani, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem.
1998, 63, 6234–6238. (d) Cadierno, V.; Gimeno, J.; Nebra, N. Chem.;
Eur. J. 2007, 13, 9973–9981. (e) St. Cyr, D. J.; Arndtsen, B. A. J. Am.
Chem. Soc. 2007, 129, 12366–12367. (f) Lu, Y.; Arndtsen, B. A. Angew.
Chem., Int. Ed. 2008, 47, 5430–5433. (g) Yavari, I.; Kowsari, E. Mol.
Diversity 2009, 13, 519–528. (h) Chen, X.; Hou, L.; Li, X. Synlett 2009,
828–832. (i) Anary-Abbasinejad, M.; Charkhati, K.; Anaraki-Ardakani,
H. Synlett 2009, 1115–1117. (j) Merkui, E.; Boersch, C.; Frank, W.;
Muller, T. J. J. Org. Lett. 2009, 11, 2269–2272. (k) Shanthi, G.; Perumal,
R. T. Tetrahedron Lett. 2009, 50, 3959–3962. (l) Liu, W.; Jaang, H.;
Huang, L. Org. Lett. 2010, 12, 312–315. (m) Maiti, S.; Biswas, S.; Jana,
U. J. Org. Chem. 2010, 75, 1674–1683. (n) St. Cyr, D. J.; Morin, M. S. T.;
Belanger-Gariepy, F.; Arndtsen, B. A.; Krenske, E. H.; Houk, K. N.
J. Org. Chem. 2010, 75, 4261–4273 and references cited therein.
(4) (a) Verhe, R.; De Kimpe, N.; De Buyck, L.; Tilley, M.; Schamp,
N. Tetrahedron 1980, 36, 131–142. (b) Kusumoto, T.; Hiyama, T.;
Ogata, K. Tetrahedron Lett. 1986, 27, 4197–4200. (c) Chatani, N.;
Hanafusa, T. J. Org. Chem. 1991, 56, 2166–2170. (d) Marco, J. L.;
Martinez-Grau, A.; Martin, N.; Seoane, C. Tetrahedron. Lett. 1995, 30,
5393–5396. (e) Nair, V.; Vinod, A. U.; Rajesh, C. J. Org. Chem. 2001, 66,
4427–4429. (f) Chien, T.-C.; Meade, E. A.; Hinkley, J. M.; Townsend,
L. B. Org. Lett. 2004, 6, 2857–2859. (g) Shaabani, A.; Teimouri, M. B.;
Arab-Ameri, S. Tetrahedron Lett. 2004, 45, 8409–8413. (h) Demir, A.;
Emrullahoglu, M. Tetrahedron 2006, 62, 1452–1458. (i) Al-Mousawi,
S. M.; Moustafa, M. S.; Meier, H.; Kolsshorn, H.; Elnagdi, M. H.
Molecules 2009, 14, 798–806. (j) Barnea, E.; Majumder, S.; Staples, R. J.;
Odom, A. L. Organometallics 2009, 28, 3876–3881. (k) Fontaine, P.;
Masson, G.; Zhu, J. Org. Lett. 2009, 11, 1555–1558.
(5) (a) Mohamed, M. S.; Rashad, A. E.; Adbel-monem, M.;
Fatahalla, S. S. Z. Naturforsch. 2007, 62c, 27–31. (b) Berger, M.;
Schaecke, H.; May, E.; Skuballa,W.; Kuenzer, H. PCT Int. Appl. WO
2008098798 A1, 2008.
(6) Cocco, M. T.; Congiu, C.; Onnis, V. Bioorg. Med. Chem. 2003, 11,
495–503.
(7) Akiyoshi, A.; Takashi, S.; Naohisa, O.; Yasuo, S.; Motoniro, S.;
Junji, N.; Masayosh, K. PCT Int. Appl. JP2009179589 (A), 2009.
(8) Onnis, V.; De Log, A.; Cocco, M. T.; Fadda, R.; Meleddu, R. Eur.
J. Med. Chem. 2009, 44, 1288–1295.
(9) Chou, D.; Knauf, W.; Maier, M.; Malaska, M. J.; McIntyre, D.;
Lochhaas, F.; Huber, S. K. PCT Int. Appl. US 20070281976 A1, 2007.
(10) Ghorab, M. M.; Heimy, H. I.; Khalil, A. I.; Abou El Ella, D. A.;
Noaman, E. Phosphorus, Sulfur, Silicon 2008, 183, 90–104.
(11) Wallace, M. B.; Adams, M. E.; Kanouni, T.; Mol, C. D.;
Dougan, D. R.; Feher, V. A.; O’Connell, S. M.; Shi, L.; Halkowycz,
P.; Dong, Q. Bioorg. Med. Chem. Lett. 2010, 20, 4156–4158.
(12) Heng, R.; Koch, G.; Schlapbach, A.; Seiler, M. P. PCT Int.
Appl. WO 2008034600 A1, 2008.
This methodology was also used for the synthesis of
tetrasubstituted NH-pyrroles by base-promoted dehydro-
sulfinylation of the 2-pyrroline mixtures. It was previously
reported that DBU was able to promote the elimination of
toluenesulfinic acid from N-tosyl-3-pyrrolines to give
pyrroles.28 In our case, the treatment of mixtures of 2-pyrrolines
with DBU in DMF leads to the formation of tetrasubstituted
(13) Ronan, B.; Tabart, M.; Souaille C.; Viviani, F.; Bacque, E. PCT
Int. Appl. FR2881742 A1, 2006.
(14) Wang, D.; Kosh, J. W.; Sowell, J. W., Sr.; Wang, T. PCT Int.
Appl. WO 2005046676 A1, 2005.
(15) Kenji, K.; Noriko, K. PCT Int. Appl. WO 2010024227 A1, 2010.
(16) Bullington, J. L.; Fan, X.; Jackson, P. F.; Zhang, Y.-M. PCT Int.
Appl. WO 2004029040 A1, 2004.
(17) Tanaka, M.; Sasaki, Y.; Kimura, Y.; Fukui, T.; Ukai, Y. BJU
Int. 2003, 92, 1031–1036.
(18) Mohamed, M. S.; Kamel, R.; Fatahala, S. S. Eur. J. Med. Chem.
2010, 45, 2994–3004.
(19) (a) Diana, P.; Barraja, P.; Lauria, A.; Montalbano, A.; Almerico,
M.; Dattolo, G.; Cirrincione Eur. J. Med. Chem. 2002, 37, 267–272.
(b) Willemann, C.; Grunert, R.; Bednarski, P. J.; Troschutz, R.; Cocco,
M. T.; Congiu, C.; Onnis, V. Bioorg. Med. Chem. 2009, 17, 4406–4419.
(20) (a) Bennet, S. M.; Nguyen-Ba, N.; Ogilvie, K. K. J. Med. Chem.
1990, 33, 2162–2173. (b) Krawczyk, S. H.; Nassiri, M. R.; Kucera, L. S.;
Kern, E. R.; Ptak, R. G.; Wotring, L. L.; Drach, J. C.; Townsend, L. B.
J. Med. Chem. 1995, 38, 4106–4114. (c) Migawa, M. T.; Drach, J. C.;
Townsend, L. B. J. Med. Chem. 2005, 48, 3840–3851.
(21) El-Gaby, M. S. A.; Gaber, A. M.; Atalla, A. A.; Abd Al-Wahab,
K. A. Farmaco 2002, 57, 613–617.
(22) Castelhano, A. L.; McKibben, B.; Witter, D. J. PCT Int. Appl.
US 6878716 B1, 2005.
(24) Gangjee, A.; Jain, H. D.; Queener, S. F.; Kisliuk, R. L. J. Med.
Chem. 2008, 51, 4589–4600.
(25) Gupta, P. K.; Daunert, S.; Nassiri, M. R.; Wotring, L. L.; Drach,
J. C.; Townsend, L. B. J. Med. Chem. 1989, 32, 402–408.
(26) (a) Kabayashi, J.; Cheng, J.; Kikuchi, Y.; Ishibashi, M.;
Yamamura, S.; Ohizumi, Y.; Ohta, T.; Nozoe, S. Tetrahedron Lett.
1990, 31, 4617–4620. (b) Tsuda, M.; Nozawa, K.; Shimbo, K.; Kobayashi,
J. J. Nat. Prod. 2003, 66, 292–294. (c) Davis, R. A.; Christensen, L. V.;
Richardson, A. D.; Moreira da Rocha, R.; Ireland, C. M. Mar. Drugs
2003, 1, 27–33.
(27) Magedov, I. V.; Luchetti, G.; Evdokimov, N. M.; Manpadi, M.;
Steelant, W. F. A.; Van slambrouck, S.; Tongwa, P.; Antipin, M. Yu.;
Kornienko, A. Bioorg. Med. Chem Lett.. 2008, 18, 1392–1396.
(28) Mastalerz, H.; Gavai, A. V.; Fink, B.; Struzynski, C.; Tarrant, J.;
Vite, G. D.; Wong, T. W.; Zhang, G.; Vyas, D. M. Can. J. Chem. 2006,
84, 528–533.
(23) Bookser, B. C.; Ugarkar, B. G.; Matelich, M. C.; Lemus, R. H.;
Allan, M.; Tsuchiya, M.; Nakane, M.; Nagahisa, A.; Wiesner, J. B.;
Erion, M. D. J. Med. Chem. 2005, 48, 7808–7820.
Org. Lett., Vol. 13, No. 5, 2011
1119