116 Combinatorial Chemistry & High Throughput Screening, 2010, Vol. 14, No. 2
Díaz-Ortiz et al.
[19]
Perio, B.; Dozias, M.-J.; Hamelin, J. Ecofriendly fast batch
synthesis of dioxolanes, dithiolanes, and oxathiolanes without
solvent under microwave irradiation. Org. Proc. Res. Develop.,
1998, 2, 428-430.
Cléophax, J.; Liagre, M.; Loupy, A.; Petit, A. Application of
focused microwaves to the scale-up of solvent-free organic
reactions. Org. Proc. Res. Develop., 2000, 4, 498-504.
Moseley, J.D.; Lenden, P.; Lockwood, M.; Ruda, K.; Sherlock,
J.P.; Thomson, A.D., Gilday, J.P. A comparison of commercial
microwave reactors for scale-up within process chemistry. Org.
Proc. Res. Develop., 2008, 12, 30-40.
Bowman, M.D.; Holcomb, J.L.; Kormos, C.M.; Leadbeater, N.E.;
Williams, V.A. Approaches for scale-up of microwave-promoted
reactions. Org. Proc. Res. Develop., 2008, 12, 41-57.
Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jacquault, P.,
Mathé, D. New solvent free organic synthesis using focused
microwaves. Synthesis, 1998, 1213-1234.
Díaz-Ortiz, Á.; Díez-Barra, E.; de la Hoz, A.; Moreno, A.; Gómez-
Escalonilla, M.J.; Loupy, A. 1,3-Dipolar cycloaddition of nitriles
under microwave irradiation in solvent-free conditions.
Heterocycles, 1996, 43, 1021-1030.
Díaz-Ortiz, Á.; de la Hoz, A.; Alcázar, J.; Carrillo, J.R.; Herrero,
M.A.; Fontana, A., Muñoz, J. de M. Reproducibility and scalability
of solvent-free microwave-assisted reactions: From domestic ovens
to controllable parallel applications. Comb. Chem. High
Throughput Screen., 2007, 10, 163-169.
Abenhaïm, D.; Díez-Barra, E.; de la Hoz, A.; Loupy, A.; Sánchez-
Migallón, A. Selective alkylations of 1,2,4-triazole and
benzotriazole in the absence of solvent. Heterocycles, 1994, 38,
793-802.
Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.;
Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin,
A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.;
Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.;
Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.;
Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.;
Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.;
Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.;
Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.;
Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; and Pople,
J.A.; Gaussian, Inc., Wallingford CT, 2004.
Hehre, W.J.; Radom, L.; Schleyer, P.R.; Pople, J.A. In: Ab Initio
Molecular Orbital Theory; Wiley: New York, 1986; pp 65-88 and
the references therein.
Parr, R. G.; Yang W. Density-Functional Theory of Atoms and
Molecules; Oxford University Press, New York, 1994.
Ziegler, T. Approximate density functional theory as a practical
tool in molecular energetics and dynamics. Chem. Rev., 1991, 91,
651-667.
[20]
[21]
[22]
[23]
[24]
[37]
[38]
[39]
[25]
[26]
[40]
[41]
[42]
Kohn, W.; Becke, A.D.; Parr, R.G. Density functional theory of
electronic structure. J. Phys. Chem., 1996, 100, 12974-12980.
Becke, A.D. Density-functional thermochemistry. 3. The role of
exact exchange. J. Chem. Phys., 1993, 98, 5648-5652.
Becke, A.D. Density-functional exchange-energy approximation
with correct asymptotic-behavior. Phys. Rev. A, 1988, 38, 3098-
3100.
[27]
[28]
[29]
Mojtahedi, M. M.; Saidi, M. R.; Bolourtchian, M. A novel method
for the synthesis of disubstituted ureas and thioureas under
microwave irradiation. J. Chem. Res. (S), 1999, 710-711.
Bosch, A. I.; de la Cruz, P.; Díez-Barra, E.; Loupy, A.; Langa, F.
Microwave-assisted Beckmann rearrangement of ketoximes in dry
media. Synlett, 1995, 1259-1259.
Barbry, D.; Champagne, P. Fast synthesis of aromatic aldehydes
from benzylic bromides without solvent under microwave
irradiation. Tetrahedron Lett., 1996, 37, 7725-7726.
[43]
[44]
[45]
[46]
[47]
Barone, V.; Cossi, M.; Tomassi, J. A new definition of cavities for
the computation of solvation free energies by the polarizable
continuum model. J. Chem. Phys., 1997, 107, 3210-3221.
Perreux, L.; Loupy, A. A tentative rationalization of microwave
effects in organic synthesis according to the reaction medium, and
mechanistic considerations. Tetrahedron, 2001, 57, 9199-9223.
Gedye, R.N.; Smith, F.E.; Westaway, K.C. The rapid synthesis of
organic-compounds in microwave-ovens. Can. J. Chem., 1988, 66,
17-26.
Houk, K.N.; Gonzalez, J.; Li, Y. Pericyclic reaction transition-
states - Passions and punctilios, 1935-1995. Acc. Chem. Res., 1995,
28, 81-90.
Arrieta, A.; Otaegui, D.; Zubia, A.; Cossío, F.P.; Díaz-Ortiz, A.; de
la Hoz, A.; Herrero, M.A.; Prieto, P.; Foces-Foces, C.; Pizarro,
J.L.; Arriortua, M.I. Solvent-free thermal and microwave-assisted
[3+2] cycloadditions between stabilized azomethine ylides and
nitrostyrenes. An experimental and theoretical study. J. Org.
Chem., 2007, 72, 4313-4322.
Langa, F.; de la Cruz, P.; de la Hoz, A.; Espíldora, E.; Cossío, F.P.;
Lecea, B. Modification of regioselectivity in cycloadditions to C-70
under microwave irradiation. J. Org. Chem., 2000, 65, 2499-2507.
Vivanco, S.; Lecea, B.; Arrieta, A.; Prieto, P.; Morao, I.; Linden,
A.; Cossio, F.P. Origins of the loss of concertedness in pericyclic
reactions: Theoretical prediction and direct observation of stepwise
mechanisms in [3+2] thermal cycloadditions. J. Am. Chem Soc.,
2000, 122, 6078-6092.
Rigolet, S.; Goncalo, P.; Melot, J.M.; Lebrel, J. The 1,3-dipolar
cycloaddition of 3-methylene-N-substituted isoindolones and
nitrones by classical and microwave techniques: Reactivity and
stereochemical studies. J. Chem. Res. (S), 1998, 686-687A.
Feely, W.; Lehn, W.; Boekelheide, V. Alkaline decomposition of
quaternary salts of amine oxides. J. Org. Chem., 1957, 22, 1135-
1135.
[30]
[31]
AMPAC 8.53, Semichem, Inc., PO Box 1649, Shawnee, KS 66222,
USA.
Coulombel, L.; Rajzmann, M.; Pons, J.M.; Olivero, S.; Duñach, E.
Aluminium (III) trifluoromethanesulfonate as an efficient catalyst
for the intramolecular hydroalkoxylation of unactivated olefins:
Experimental and theoretical approaches. Chem. Eur. J., 2006, 12,
6356-6365.
Pons, J.-M.; Oblin, M.; Pommier, A.; Rajzmann, M.; Liotard, D.
Formation of beta-lactones through Lewis acid-promoted
[2+2]cycloaddition reaction. A theoretical study. J. Am. Chem.
Soc., 1997, 119, 3333-3338.
Tucker, S.C.; Truhlar, D.G. Generalized Born fragment charge
model for solvation effects as a function of reaction coordinate.
Chem. Phys. Lett., 1989, 157, 164-170.
Cramer, C.J.; Truhlar, D.G. General parameterized SCF model for
free-energies of solvation in aqueous-solution. J. Am. Chem. Soc.,
1991, 113, 8305-8311.
Hawkins, G.D.; Cramer, C.J.; Truhlar, D.G. Universal quantum
mechanical model for solvation free energies based on gas-phase
geometries. J. Phys. Chem. B, 1998, 102, 3257-3271.
Gaussian 03, Revision C.02, Frisch, M.J.; Trucks, G.W.; Schlegel,
H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery,
Jr., J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.;
Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
[32]
[48]
[49]
[33]
[34]
[35]
[36]
[50]
[51]
Received: July 14, 2010
Revised: August 5, 2010
Accepted: August 7, 2010