Journal of the American Chemical Society
Page 6 of 7
electrolyte. (c) Connelly, N. G.; Geiger, W. E. Eo’ = − 2.2 V for
the [benzophenone]ꢀ[benzophenone radical anion] couple.
(14) These reactions are quite distinct from the reduction of benzopheꢀ
none carried out by KOtBu in the presence of hydrogen gas: (a)
Walling, C.; Bollyky, L. J. Am. Chem. Soc. 1964, 86, 3750−3752;
(b) Walling, C.; Bollyky, L. J. Am. Chem. Soc.1961, 83,
2968−2969. (c) Berkessel, A.; Thomas J. S. Schubert, T. J. S.;
Mueller, T. N.; J. Am. Chem. Soc. 2002, 124, 8693−8698.
(15) Cahard, E.; Schoenebeck, F.; Garnier, J.; Cutulic, S. P. Y.; Zhou,
S.; Murphy, J. A Angew. Chem. Int. Ed. 2012, 51, 3673 –3676.
(b) Mohan M., Murphy, J. A.; LeStrat, F.; Wessel, H. P. Beilstein
J. Org. Chem. 2009, 5, No. 1. doi:1.3762/bjoc.5.1. (c) Murphy, J.
A. J. Org. Chem. 2014, 79, 3731−3746.
(16) We attribute the nonꢀzero value of the blank reactions to traces of
transition metals, no matter how small, that are likely to be preꢀ
sent in some reagents that could produce very small amounts of
products. The underlines the importance of conducting our blank
experiments. See Arvela, R. K.; Leadbeater, N. E.; Sangi, M. S.;
Williams, V. A.; Granados, P.; Singer, R. D., J. Org. Chem. 2005,
70, 161–168.
(17) Scott, T. A.; Ooro, B. A.; Collins, D. J.; Shatruk, M.; Yakovenko,
A.; Dunbar, K. R.; Zhou, H.ꢀC. Chem. Commun. 2009, 65–67.
(18) Anderson, G. M.; Cameron, I.; Murphy, J. A.; Tuttle, T., RSC
Adv. 2016, 6, 11335ꢀ11343.
(19) GaussSum software was used to reproduce the UVꢀvis spectra:
O'Boyle, N. M.; Tenderholt, A. L.; Langner. K. M. J. Comp.
Chem. 2008, 29, 839–845.
(20) Walling, C.; Jacknow, B. B. J. Am. Chem. Soc. 1960, 82, 6108–
6112. (b) Griller, D.; Ingold, K. U. Acc. Chem. Res. 1980, 13,
317–332.
(21) Unique peaks were detected and their elemental composition asꢀ
signed in the methylation or ethylation experiments by HRMS
(EI): (a) methylation experiment: methylbenzophenone C14H12O
(m/z 196.0893, calc. 196.0888); (b) ethylation experiment,
ethylbenzophenone C15H14O (m/z 210.1052, calc. 210.1045).
(22) This paper illustrates the differential effects of alkali metal catiꢀ
ons Na+ and K+ in their butoxides. Building on the roles of alkali
metal salts in organic synthesis, recent studies by the Chiba group
illustrate the effect of anionic additives on the reactivity of NaH.
(a) Too, P. C.; Chan, G. H.; Tnay, Y. L.; Hirao, H.; Chiba, S;
Angew. Chem. Int. Ed. 2016, 55, 3719 –3723. (b) Hong, Z.; Ong,
D. Y.; Muduli, S. K.; Too, P. C.; Chan, G. H.; Tnay, Y. L.; Chiba,
S.; Nishiyama, Y.; Hirao, H.; Soo, H. S. Chem. Eur. J. 2016, 22,
7108–7114. (c) Ong, D. Y.; Tejo, C.; Xu, K.; Hirao, H.; Chiba,
S. Angew. Chem. Int. Ed. 2017, 56, 1840 –1844. Huang, Y.;
Chan, G. H.; Chiba, S. Angew. Chem. Int. Ed. 2017, 56, 6544 –
6547.
M.; Grubbs, R. H. Nature 2015, 518 , 80–84. (h) Drapeau, M. P.;
Fabre, I.; Grimaud, L.; Ciofini, I.; Ollevier, T.; Taillefer, M. Anꢀ
gew. Chem. Int. Ed. 2015, 54, 10587–10591.
1
2
3
4
5
6
7
8
(7) (a) Patil, M. J. Org. Chem, 2016, 81, 632−639. (b) Ragno, D.;
Zaghi, A.; Di Carmine, G.; Giovannini, P. P.; Bortolini, O.;
Fogagnolo, M.; Molinari, A.; Venturini, A.; Massi, A. Org. Bioꢀ
mol. Chem., 2016, 14, 9823–9835. (c) For a series of unusual
transformations, see Chen, J. H.; Chen, Z.ꢀC.; Zhao, H.; Zou, Y.;
Zhang, X.ꢀJ.; Yan, M. Org. Biomol. Chem., 2016, 14, 11148–
11153 and references therein (d) Barham, J. P.; Coulthard, G.;
Kane, R. G.; Delgado, N.; John, M. P.; Murphy, J. A. Angew.
Chem. Int. Ed., 2016, 55, 4492ꢀ4496. (e) Barham, J. P.; Coulꢀ
thard, G.; Emery, K. J.; Doni, E.; Cumine, F.; Nocera, G.; John,
M. P.; Berlouis, L. E. A.; McGuire, T.; Tuttle, T.; Murphy, J. A.
J. Am. Chem. Soc. 2016, 138, 7402–7410.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8) (a) Liu, W; Hou, F; Tetrahedron , 2017, 73, 931−937. (b) Buden,
M. E.; Bardagí, J. I.; Puiatti, M.; Rossi, R. A, J. Org. Chem. 2017,
82, 8325−8333. (c) Zhao,H.; Shen, J. Ren, C.; Zeng,W.; Zeng, H.
Org. Lett. 2017, 19, 2190−2193 (d) Liu, Y.; Xu, Z.; Zhang, J.;
Xu,X.; Jin, Z. Org. Lett. 2017, 19, 5709−5712 (e) Guo, Z.; Li, M.;
Mou, X.ꢀQ.;He, G.; Xue,X.ꢀS., Chen, C. Org. Lett. 2018, 20,
1684−1687. (f) Zhang,Y.; Wu, X.; Hao, L.; Wong, Z. R.; Lauw,
S. J. L.; Yang,S.; Webster, R. D.; Chi, Y. R. Org. Chem. Front.,
2017, 4, 467−471. (g) Cumine, F.; Zhou, S.; Tuttle.T.; Murphy, J.
A. Org. Biomol. Chem., 2017, 15, 3324−3336. (h) Emery, K. J.;
Tuttle, T.; Murphy, J. A. Org. Biomol. Chem., 2017, 15,
8810−8819. (i) Caminos, D. A.; Puiatti, M.; Bardagı, J. I.;
Penenory, A. B. RSC Adv., 2017, 7, 31148–31157. (j) Ahmed, J.;
Sreejyothi, P.; Vijaykumar, G.; Jose, A.; Rajb, M.. Mandal S. K.
Chem. Sci., 2017, 8, 7798−7806; (k) Chen, Z.ꢀY.; Wu, L. Y.;
Fang, H.ꢀS.; Zhang, T.; Mao, Z.ꢀF.; Zou, Y.; Zhang, X.ꢀJ.; Ming
Yan, M. Adv. Synth. Catal. 2017, 359, 3894−3899; (l) Chen, J.;
Wu, J. Angew. Chem. Int. Ed. 2017, 56, 3951–3955. (m) Zhang,
L.; Jiao, L., J. Am. Chem. Soc. 2017, 139, 607−610. (n) Liu, W.
B.; Schuman, D. P.; Yang, Y. F.; Toutov, A. A.; Liang, Y.; Klare,
H. F. T.; Nesnas,N.; Oestreich,M.; Blackmond, D. G.; Virgil,S.
C.; Banerjee,S.; Zare,R. N.; Grubbs, R. H.; Houk, K. N.; Stoltz,
B. M. J. Am. Chem. Soc. 2017, 139, 6867−6879 (o) Schuman, D.
P.; Grubbs, R. H.; Stoltz, B. M.; Krenske, E. H.; Houk, K. N.;.
Zare, R. N. J. Am. Chem. Soc. 2017, 139, 6880−6887. (p) Evoniꢀ
uk, C. J.; dos Passos Gomes, G.; Hill, S. P.; Fujita, S.; Hanson,
K.; Alabugin, I. V.; J. Am. Chem. Soc. 2017, 139, 16210−16221;
(q) Lin, S.; He, X.; Meng, J.; Gu, H.; Zhang, P.; Wu, J.Eur. J.
Org. Chem. 2017, 443–447. (r) Poonpatana, P.; dos Passos
Gomes, G.; Hurrle, T.; Chardon, K.; Brase, S.; Masters, K.ꢀS.;
Alabugin, , I. Chem. Eur. J. 2017, 23, 9091–9097. (s) Sattar, M.;
Rathore, V.; Prasad, C. D.; Kum. S. Chem. Asian J. 2017, 12,
734–743. (t) Smith, A. J. Young, A.; Rohrbach, S.; O’Connor, E.
F.; Allison, M.; Wang, H.ꢀS.; Poole, D. L.; Tuttle,T.; Murphy, J.
A. Angew. Chem. Int. Ed. 2017, 56, 13747–13751. (w) Yang, H.;
Zhang, L.; Jiao, L. Chem. Eur. J. 2017, 23, 65–69.
(23) (a) Hoffmann, N. Chem. Rev. 2008, 108, 1052–1103. (b) Dormán,
G.; Nakamura, H.; Pulsipher, A.; Prestwich, G. D. Chem. Rev.
2016, 116, 15284–15398. (c) Wagner, P. J. In Triplet States III;
Springer Berlin Heidelberg: Berlin, Heidelberg, 1976; pp 1–52.
(24) (a) Singh, M.; Yadav, a. K.; Yadav, L. D. S.; Singh, R. K. P. Tetꢀ
(9) Tintori, G.; Nabokoff, P. Buhaibeh, R.; BergꢀLefranc, D.; Redon,
S. Broggi, J.; Vanelle, P. Angew. Chem. Int. Ed. 2018, 57, 3148–
3153.
(10) Studer, A.; Curran, D. P. Angew. Chem. Int. Ed. 2011, 50,
5018−5022.
(11) (a) Russell, G. A.; Janzen, E. G.; Strom, E. T. J. Am. Chem. Soc.
1962, 84, 4155−4157. (b) Screttas, C. G.; Cazianis, C. T. Tetraꢀ
hedron 1977, 34, 933−948.
(12) (a) Ashby, E. C.; Goel, A. B.; Argyropoulos, J. N. Tetrahedron
Lett. 1982, 23, 2273−2276. (b) Ashby, E. C.; Argyropoulos, J. N.
J. Org. Chem. 1986, 51, 3593–3597. (c) Ashby, E. C. Acc. Chem.
Res. 1988, 21, 414−421.
rahedron Lett., 2017, 58, 2206–2208. (b) Xia, J.ꢀB.; Zhu, C.;
Chen, C. J. Am. Chem. Soc. 2013, 135, 17494–17500.
(25) Dai, P.; Ma, J.; Huang, W.; Chen, W.; Wu, N.; Wu, S.; Li, Y.;
Cheng, X.; Tan, R. ACS Catal. 2018, 8, 802–806.
(26) (a) Bahamonde, A.; Melchiorre, P. J. Am. Chem. Soc. 2016, 138,
8019−8030. (b) Silvi, M.; Melchiorre, P. Nature, 2018, 554, 41–
49.
(27) Marzo, L.; Pagire, S. K.; Reiser, O.; König, B., Angew. Chem. Int.
Ed. 2018, 57, 10.1002/anie.201709766.
(13) Note that different values are cited: (a) Tsierkezos, N. G., J. Soluꢀ
tion Chem. 2007, 36, 1301−1310 gave Eo = −1.269 V in DMF vs.
Ag/AgCl (b) Jensen, B. S.; Parker, V. D. J. C. S. Chem. Comm.,
1974, 367−368. Eo’ = −1.72 V in DMF vs. SCE with Me4NBr as
6
ACS Paragon Plus Environment