2010 Inorg. Chem. 2011, 50, 2010–2014
DOI: 10.1021/ic1022906
Synthesis of Boroxine-Linked Aluminum Complexes
Xiaoli Ma,† Zhi Yang,*,† Xiujuan Wang,† Herbert W. Roesky,*,‡ Feng Wu,† and Hongping Zhu§
†School of Chemical Engineering and Environment, Beijing Institute of Technology, 100081 Beijing, China,
‡
€
€
Institut fu€r Anorganische Chemie der Georg-August-Universitat Gottingen, Tammannstrasse 4,
§
€
D-37077 Gottingen, Germany, and State Key Laboratory of Physical Chemistry of Solid Surfaces,
National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
Received November 16, 2010
The reaction of LAlH2 (L = HC(CMeNAr)2, Ar = 2,6-i Pr2C6H3) (1) with 3-methylphenylboronic acid and 3-fluoro-
phenylboronic acid resulted in the boroxine-linked aluminum compounds LAl[OB(3-CH3C6H4)]2(μ-O) (2) and
LAl[OB(3-FC6H4)]2(μ-O) (3), respectively. LAl[OB(2-PhC6H4)(OH)]2 (4) was synthesized by the reaction of 1 with
2-biphenylboronic acid. Compound 4 is the intermediate analogue to those, which we postulated for the formation of 2
and 3. The reaction of 1 with 3-hydroxyphenylboronic acid resulted in the first metal benzoboroxole oxide LAl[OB(o-
CH2O)C6H4]2 (5), which is formed from a compound with B-(OH)2 and C-OH functionalities.
Introduction
boroxines. However, only two examples of aluminum sub-
stituted boroxines were reported due to limited synthetic
methods.5,6
Boroxines are polymeric materials prepared from organo-
boronic acids by dehydration.1 They are not only of funda-
mental academic interest (e.g., structural investigations,
electrochemistry, intermediate products, etc.) but also im-
portant for industrial applications (flame retardants for light
metals, lithium ion battery materials, etc.).2 In 2005, Yaghi
et al. reported the first crystalline arylboroxine-based covalent
organic framework material.3 Furthermore, aluminum hetero-
metallic oxides have attracted much interest due to their
broad applications in chemical processes.4 We reasoned that
aluminum substituted boroxines containing the Al-O-B
moiety might have unusual properties compared to those of
Benzoboroxoles are highly useful synthetic intermediates
for transition metal catalyzed cross-coupling reactions and
are widely utilized in medicinal and materials chemistry.7 In
2006, we reported a rare aluminum spirocyclic hybrid with an
inorganic B2O3 and an organic C3N2 core.6 In that paper, we
explained the annelation mechanism only by DFT calcula-
tion without further experimental proof. The electronic and
sterical effects of bulky β-diketiminato ligands are usually
used to stabilize the metal center to avoid condensation of
molecules and to form unique compounds. It is possible to
change selectively the functionalities at the Al center by using
those ligands. Herein, we report a series of novel structures
bearing the Al-O-B unit, give solid experimental proof of
the annelation mechanism, and discuss a one step route to the
first metal benzoboroxole oxide by the reaction of 3-hydro-
xyphenylboronic acid with aluminum dihydride LAlH2
(1; L = HC(CMeNAr)2, Ar = 2,6-iPr2C6H3) supported by
the bulky β-diketiminato ligand.
*To whom correspondence should be addressed. Fax: (þ86) 10-68911032.
E-mail: zhiyang@bit.edu.cn (Z.Y.); hroesky@gwdg.de (H.W.R.).
(1) Hall, D. G. Boronic Acids, 1st ed.; Wiley-VCH: Weinheim, Germany,
2005.
(2) Korich, A. L.; Iovine, P. M. Dalton Trans. 2010, 1423–1431.
(3) Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.;
Yaghi, O. M. Science 2005, 310, 1166–1170.
(4) (a) Mandal, S. K.; Roesky, H. W. Acc. Chem. Res. 2010, 43, 248–259.
(b) Bai, G. C.; Singh, S.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G. J. Am.
Chem. Soc. 2005, 127, 3449–3455. (c) Yang, Z.; Zhu, H.; Ma, X.; Chai, J.;
Roesky, H. W.; He, C.; Magull, J.; Schmidt, H.-G.; Noltemeyer, M. Inorg. Chem.
2006, 45, 1823–1827. (d) Nembenna, S.; Roesky, H. W.; Mandal, S. K.; Oswald,
R. B.; Pal, A.; Herbst-Irmer, R.; Noltemeyer, M.; Schmidt, H.-G. J. Am. Chem.
Soc. 2006, 128, 13056–13057. (e) Sarish, S. P.; Nembenna, S.; Roesky, H. W.;
Ott, H.; Pal, A.; Stalke, D.; Dutta, S.; Pati, S. K. Angew. Chem., Int. Ed. 2009, 48,
8740–8742. (f) Roesky, H. W.; Bai, G.; Jancik, V.; Singh, S. U.S. Patent
17,645,716 B2, 2010. (g) Roesky, H. W.; Gurubasavaraj. U.S. Patent 0306227
A1, 2008.
(7) (a) Nicolaou, K. C.; Li, H.; Boddy, C. N. C.; Ramanjulu, J. M.; Yue,
€
€
T.-Y.; Natarajan, S.; Chu, X.-J.; Brase, S.; Rubsam, F. Chem. Eur. J. 1999,
;
5, 2584–2601. (b) Nicolaou, K. C.; Natarajan, S.; Li, H.; Jain, N. F.; Hughes, R.;
Solomon, M. E.; Ramanjulu, J. M.; Boddy, C. N. C.; Takayanagi, M. Angew.
Chem., Int. Ed. 1998, 37, 2708–2714. (c) Tan, Y. L.; White, A. J. P.; Widdowson,
D. A.; Wilhelm, R.; Williams, D. J. J. Chem. Soc. Perkin. Trans. 2001, 1, 3269–
3280. (d) Baker, S. J.; Zhang, Y. K.; Akama, T.; Lau, A.; Zhou, H.; Hermandez, Y.;
Mao, W.; Alley, M. R. K.; Sanders, Y.; Plattner, J. J. J. Med. Chem. 2006, 49,
4447–4450. (e) Alexander, C.; Smith, C. R.; Whitcombe, M. J.; Vulfson, E. N.
J. Am. Chem. Soc. 1999, 121, 6640–6651. (f) Robin, B.; Buell, G.; Kiprof, P.;
Nemykin, V. N. Acta Crystallogr. 2008, E64, o314–o315. (g) Sørenson, M. D.;
Martins, R.; Hindsgaul, O. Angew. Chem., Int. Ed. 2007, 46, 2403–2407. (h) Pal,
A.; Berube, M.; Hall, D. G. Angew. Chem., Int. Ed. 2010, 49, 1492–1495.
€
~
(5) Koster, R.; Angermund, K.; Serwatowski, J.; Sporzynski, A. Chem.
Ber. 1986, 119, 1301–1314.
(6) Yang, Z.; Ma, X. L.; Oswald, R. B.; Roesky, H. W.; Noltemeyer, M.
J. Am. Chem. Soc. 2006, 128, 12406–12407.
r
pubs.acs.org/IC
Published on Web 02/14/2011
2011 American Chemical Society