cyanide-binding,9 and sulfonate-binding chiral thiourea
organocatalysts.10 The oxyanion-binding thiourea orga-
nocatalysts were explored by the laboratories of Schreiner
in alcohol funtionalization strategies.11 Most recently, the
laboratories of Seidel disclosed the carboxylate-binding
chiral thiourea organocatalyst systems for the kinetic
resolution of various amine derivatives.12 Given the facile
synthetic variation of thiourea structures, it is of interest to
exam if achiral thiourea derivatives exhibit the cooperative
catalysis with chiral transition metal complexes.
The idea of cooperative catalysis was explored in the
context of direct catalytic asymmetric aldol reaction of
R-isocyanoacetates. In the paradigm of transition-metal-
catalyzed reactions of isocyanides, the ability of a metal ion
to form a complex I with isocyano functionality dictates
the chemical pathways of such complexes (Scheme 1).13
Accordingly, the aldol reactions of R-isocyanoacetates are
catalyzed by a number of metal complexes. While the
highly diastereo- and enantioselective aldol reaction of
methyl R-isocyanoacetate was demonstrated by Ito and
Hayashi using chiral Au(I)- and Ag(I)-ferrocenylphos-
phine complexes,14 the development of metal-catalyzed
asymmetric aldol reactions of R-isocyanoacetates remains
a significant challenge.15 Given the strong complexing
ability of isocyanides to metals, the low level of stereo-
induction in oxazolines III likely stems from the fact
that enolates derived from the linear metal-isocyanide
Scheme 1. Transition-Metal-Catalyzed Direct Aldol Reaction
of R-Isocyanoacetate
complex I are far removed from the chiral pocket. In
addition, a recent organocatalytic approach employing
methyl R,R-arylisocyanoacetate by Gong et al. has resulted
in modest diastereo- and enantioselectivities (2-6:1 dr’s
with 70-89% ee’s) in the presence of cupreine-derived
organocatalysts,16a while the related asymmetric aldol
reactions of R-isothiocyanato esters and imides have been
successful using chiral thiourea organocatalysts.16b-e
Scheme 2. Cooperative Catalysis of Lewis Acid and Thiourea
for Aldol Reaction of R-Isocyanoacetates
(8) (a) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126,
10558. (b) Taylor, M. S.; Tokunaga, N.; Jacobsen, E. N. Angew. Chem.,
Int. Ed. 2005, 44, 6700. (c) Raheem, I. T.; Thiara, P. S.; Peterson, E. A.;
Jacobsen, E. N. J. Am. Chem. Soc. 2007, 129, 13404. (d) Reisman, S. E.;
Doyle, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 7198. (e)
Peterson, E. A.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2009, 48, 6328.
(f) Klausen, R. S.; Jacobsen, E. N. Org. Lett. 2009, 11, 887. (g) Knowles,
R. R.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 5030. (h)
Veitch, G. E.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2010, 49, 7332.
(9) (a) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120,
4901. (b) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem., Int.
Ed. 2000, 39, 1279. (c) Vachal, P.; Jacobsen, E. N. Org. Lett. 2000, 2, 867.
(d) Su, J. T.; Vachal, P.; Jacobsen, E. N. Adv. Synth. Catal. 2001, 343,
197. (e) Zuend, S. J.; Coughlin, M. P.; Lalonde, M. P.; Jacobsen, E. N.
Nature 2009, 461, 968. (f) Zuend, S. J.; Jacobsen, E. N. J. Am. Chem. Soc.
2009, 131, 15358.
(10) Xu, A.; Zuend, S. J.; Woll, M. G.; Jacobsen, E. N. Science 2010,
327, 986.
(11) (a) Kotke, M.; Schreiner, P. R. Tetrahedron 2006, 62, 434. (b)
Kleiner, C. M.; Schreiner, P. R. Chem. Commun. 2006, 4315. (c) Kotke,
M.; Schreiner, P. R. Synthesis 2007, 779. (d) Weil, T.; Kotke, M.; Kleiner,
C. M.; Schreiner, P. R. Org. Lett. 2008, 10, 1513.
(12) (a) De, C. K.; Klauber, E. G.; Seidel, D. J. Am. Chem. Soc. 2009,
131, 17060. (b) Klauber, E. G.; De, C. K.; Shar, T. K.; Seidel, D. J. Am.
Chem. Soc. 2010, 132, 13624.
(13) For a recent review, see: Gulevich, A. V.; Zhdanko, A. G.; Orru,
R. V. A.; Nenajdenko, V. G. Chem. Rev. 2010, 110, 5235.
(14) For Au(I) catalysis, see: (a) Ito, Y.; Sawamura, M.; Hayashi, T.
J. Am. Chem. Soc. 1986, 108, 6405. For a Ag(I) catalysis, see: (b)
Hayashi, T.; Uozumi, Y.; Yamazaki, A. Tetrahedron Lett. 1991, 32,
2799. For a comprehensive review, see: ref 13.
Motivated by the historical evidence of strong H-bonding
to carbon in isocyanides,17 our initial experiments were
directed to the establishment of anion-binding inter-
actions IV between thiourea and methyl R-isocyanoacetate
(Scheme 2). We envisioned that the thiourea-assisted en-
olates would be capable of coordinating to a chiral metal
center in a more organized fashion V. From our prelimin-
ary spectroscopic investigation, the proposed anion-binding
interaction between the carbon atom of isocyanides and
N-H of thioureas was evident, where the downfield shift
of thiourea proton in 1H NMR as well as the lower N-H
stretching frequency in IR were interpreted as that
H-bonded complexes IV were being formed.18
Next, we focused on examining the cooperative catalysis
that utilizes the anion-binding interactions of thioureas
under chiral transition-metal catalysis for the aldol reac-
tion of methyl R-isocyanoacetate (Table 1). The coopera-
tive catalyst effect was clearly evident in the stereoselec-
tivity of reactions employing the chiral Cu (I) complexes
derived from brucine amino diol L1 and copper(I) salts
(entries 1-3).19 While the use of copper(I) acetate elimi-
nated use of an external base since acetate played a role of
€
€
(15) (a) Nesper, R.; Pregosin, P. S.; Puntener, K.; Worle, M. Helv.
Chim. Acta 1993, 76, 2239. (b) Gorla, F.; Togni, A.; Venanzi, L. M.;
Albinati, A.; Lianza, F. Organometallics 1994, 13, 1607. (c) Longmire,
J. M.; Zhang, X.; Shang, M. Organometallics 1998, 17, 4374. (d)
Motoyama, Y.; Kawakami, H.; Shimozono, K.; Aoki, K.; Nishiyama,
H. Organometallics 2002, 21, 3408. (e) Gosiewska, S.; Huisin’t Vald, M.;
de Pater, J. J. M.; Bruijnincx, P. C. A.; Lutz, M.; Spek, A. L.; van Koten,
G.; Klein Gebbink, R. J. M. Tetrahedron: Asymmetry 2006, 17, 674. (f)
Gosiewska, S.; Herreras, S. M.; Lutz, M.; Spek, A. L.; Havenith,
R. W. A.; van Klink, G. P. M.; van Koten, G.; Klein Gebbink,
R. J. M. Organometallics 2008, 27, 2549.
(16) (a) Xue, M.-X.; Guo, C.; Gong, L.-Z. Synlett 2009, 2191. (b) Li,
L.; Klauber, E. G.; Seidel, D. J. Am. Chem. Soc. 2008, 130, 12248. (c) Shi,
Z.; Yu, P.; Chua, P. J.; Zhong, G. Adv. Synth. Catal. 2009, 351, 2797. (d)
Jiang, X.; Zhang, G.; Fu, D.; Cao, Y.; Shen, F.; Wang, R. Org. Lett.
2010, 12, 1544. (e) Vecchione, M. K.; Li, L.; Seidel, D. Chem. Commun.
2010, 4604.
(17) (a) Schleyer, P. V. R.; Allerhand, A. J. Am. Chem. Soc. 1962, 84,
1322. (b) Ferstandig, L. L. J. Am. Chem. Soc. 1962, 84, 1323.
(18) See the Supporting Information for more details.
Org. Lett., Vol. 13, No. 6, 2011
1307