R. Fandos et al. / Inorganica Chimica Acta 366 (2011) 122–127
127
and the residue washed with pentane (7 mL) to yield complex 7 as
an orange solid (0.200 g, 47%). IR (KBr, cmꢀ1): 1542 (m,
as(COO)),
1469 (vs s(COO)),
= 73 cmꢀ1 1H NMR (C6D6, rt): d 2.01 (s, 15 H,
Consolider-Ingenio 2010 ORFEO CSD2007-00006) and the Junta
de Comunidades de Castilla-La Mancha, Spain (Grant No. PCI08-
0010).
m
m
D
.
Cp*), 3.07 (s, 2 H, CH2), 3.85 (m, 2 H, CH), 3.90 (s, 5 H, CH), 4.00
(m, 2 H, CH). 13C{1H} NMR (C6D6, rt): 12.4 (Cp*), 35.0 (CH2), 68.1
(CH), 69.0 (CH), 69.1 (CH), 79.9 (Cipso), 176.1 (COO). Anal. Calc. for
References
[1] (a) E.Y. Tshuva, J.A. Ashenhurst, Eur. J. Inorg. Chem. (2009) 2203;
(b) E.Y. Tshuva, D. Peri, Coord. Chem. Rev. 253 (2009) 2098;
(c) H. Shimizu, T. Habu, Y. Takada, K. Watanabe, O. Okuno, T. Okabe,
Biomaterials 23 (2002) 2275.;
C22H26Cl2FeO2Ti: C, 53.15; H, 5.27. Found: C, 53.13; H, 5.27%.
4.2.8. Synthesis of [TiCp*Cl]2( -O)[(JJC–C5H4)2Fe (8)
l
(d) A. Moroni, C. Faldini, M. Rocca, S. Stea, S. Giannini, J. Orthop. Trauma 16
(2002) 257;
(e) M. Oka, Orthop. Sci. 6 (2001) 448;
(f) T.M. Klapötke, H. Köpf, I.C. Tornieporth-Oetting, P.S. White, Organometallics
13 (1994) 3628.
To a solution of [TiCp*Cl3] (0.320 g, 1.10 mmol) in 5 mL of tolu-
ene were added 1,10-ferrocenedicarboxylic acid (0.151 g,
0.55 mmol) and 0.306 mL (2.20 mmol) of NEt3, and the mixture
was stirred at room temperature for 4 h. After filtration, the solvent
was removed under vacuum and the solid washed with pentane
(2 mL) yielding complex 8 as a red crystalline solid (0.250 g,
[2] Y. Dang, Coord. Chem. Rev. 135 (1994) 93.
[3] C. Oldhan, Carboxylates, squarates and related species, in: G. Wilkinson (Ed.),
Comprehensive Coordination Chemistry, Pergamon Press, Oxford, 1987;
(b) B.-H. Ye, M.-L. Tong, X.-M. Chen, Coord. Chem. Rev. 249 (2005) 545.
[4] (a) E. Mieczyn´ ska, A.M. Trzeciak, J.J. Ziółkowski, T. Lis, J. Chem. Soc. Dalton
Trans. (1995) 105;
55%). IR (KBr, cmꢀ1): 1531 (vs
mas(COO)), 1455 (vs ms(COO)),
D
= 76 cmꢀ1 1H NMR (C6D6, rt): d 2.12 (s, 30 H, Cp*), 3.67 (m, 2
.
H, CH), 3.82 (m, 2 H, CH), 4.77 (m, 2 H, CH), 4.82 (m, 2 H, CH).
13C{1H}NMR (CD2Cl2): 11.2 (Cp*), 69.7 (CH), 70.1 (CH), 71.1 (CH),
72.5 (CH), 130.9 (Cp*), 185.7 (COO). Anal. Calc. for C39H46Cl2O5Fe-
Ti2: C, 57.31; H, 5.67. Found: C, 57.63; H, 5.87%.
V.G. Kessler, Chem. Commun. (1985) 1213;
(c) C.N.R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem., Int. Ed. 43 (2004)
1466;
(d) S.L. Castro, W.E. Streib, J.C. Huffmann, G. Christou, Chem. Commun. (1996)
2177;
(e) K. Gigant, A. Rammal, M. Henry, J. Am. Chem. Soc. 123 (2001) 11632;
(f) O. Mamula, M. Lama, H. Stoeckli-Evans, S. Shova, Angew. Chem., Int. Ed. 45
(2006) 4940;
4.3. X-ray Crystallography for 1 and 8ꢁC7H8
(g) N. Guillou, C. Livage, G. Férey, Eur. J. Inorg. Chem. (2006) 4963;
(h) H. Tian, Q.-X. Jia, Y.-Q. Wang, Y. Ma, E.-Q. Gao, J. Mol. Struct. 933 (2009) 8.
[5] (a) A. Togni, T. Hayashi, Soc. Rev. 33 (2004) 313;
(c) T.M. Miller, K.J. Ahmed, M.S. Wrighton, Inorg. Chem. 28 (1989) 2347;
A summary of crystal data collection and refinement parame-
ters for all compounds are given in Table 2. Single crystals of a or-
ange block of 1 was placed in a Bruker-Nonius X8 APEXII CCD area-
detector diffractometer, equipped with a graphite monochromated
ˇ
ˇ
ˇ
(d) K. Mach, J. Kubis´ta, I. Císarová, P. Štepnicka, Acta Crystallogr., Sect. C 58
(2002) m116;
(e) J. Kühnert, P. Ecorchard, H. Lang, Eur. J. Inorg. Chem. (2008) 5125;
(f) H.-M. Gau, C.-C. Schei, L.-K. Liu, L.-H. Luh, J. Organomet. Chem. 435 (1992)
43;
Mo K
a
radiation (k = 0.71073 Å). X-ray data were collected at
and scans.
200 K, with a combination of three runs at different
u
x
A red single crystal of 8ꢁC7H8 with prismatic shape was mounted on
a glass fibber and transferred to a Bruker SMART 6K CCD area-
detector three-circle diffractometer with a Rotating Anode (Cu
(g) L.C. Francesconi, D.R. Corbin, A.W. Clauss, D.N. Hendrickson, G.D. Stuky,
Inorg. Chem. 20 (1981) 2078.
[6] A. Shafir, J. Arnold, J. Am. Chem. Soc. 123 (2001) 9212.
[7] P. Gómez-Sal, B. Royo, P. Royo, R. Serrano, I. Sáez, S. Martinez-Carreras, J. Chem.
Soc., Dalton Trans. (1991) 1575.
[8] R. Fandos, B. Gallego, A. Otero, C. Pastor, A. Rodríguez, M.J. Ruiz, P. Terreros,
Dalton Trans. 15 (2006) 2683.
[9] (a) T.J. Boyle, R.P. Tyner, T.M. Alam, B.L. Scott, J.W. Ziller, B.G.J. Potter, J. Am.
Chem. Soc. 121 (1999) 12104;
(b) S. Doeuff, Y. Dromzee, F. Taulelle, C. Sanchez, Inorg. Chem. 28 (1989) 4439;
(c) A. Bailey, M. Shang, T.P. Fehlner, Inorg. Chem. 39 (2000) 4374.
[10] (a) Y. Qian, J. Huang, X. Chen, G. Li, X. Jin, Q. Yang, Polyhedron 13 (1994) 1105;
(b) T.J. Clark, T.A. Nile, D. McPhail, A.T. McPhail, Polyhedron 8 (1989) 1804.
[11] R. Fandos, C. Hernández, A. Otero, A. Rodríguez, M.J. Ruiz, P. Terreros, J. Chem.
Soc., Dalton Trans. (2002) 11.
[12] (a) F. Bottomley, I.J.B. Lin, P.S. White, J. Am. Chem. Soc. 103 (1981) 704;
(b) J. Okuda, E. Herdtweck, Inorg. Chem. 30 (1991) 1516.
[13] M. Mena, M.A. Pellinghelli, P. Royo, R. Serrano, A. Tiripicchio, J. Chem. Soc.,
Chem. Commun. (1986) 1118.
Ka
radiation, k = 1.54178 Å) generator equipped with Goebel mir-
rors at settings of 50 kV and 110 mA. X-ray data were collected
at 100 K, with a combination of five runs at different and
u
x
scans. For both compounds the substantial redundancy in data al-
lows semi-empirical absorption corrections (SADABS) [16] to be ap-
plied using multiple measurements of symmetry-equivalent
reflections. The raw intensity data frames were integrated with
the SAINT [17] program, which also applied corrections for Lorentz
and polarization effects.
The software package SHELXTL [18] was used for space group
determination, structure solution and refinement. The space group
determination was based on a check of the Laue symmetry and sys-
tematic absences and was confirmed using the structure solution.
The structure was solved by direct method (SHELXS-97) [19], com-
pleted with difference Fourier syntheses, and refined with full-ma-
[14] G.B. Deacon, R.J. Phillips, Coord. Chem. Rev. 33 (1980) 227.
[15] (a) A.M. Cardoso, R.J.H. Clark, S.J. Moorhouse, J. Chem. Soc., Dalton Trans.
(1980) 1156;
(b) G. Hidalgo, M. Mena, F. Palacios, P. Royo, R. Serrano, J. Organomet. Chem.
340 (1988) 37.
[16] G.M. Sheldrick, SADABS Version 2004/1, A Program for Empirical Absorption
Correction, University of Göttingen, Göttingen, Germany, 2004.
trix least-squares using SHELXL-97 [20] minimizing
x
(F20 ꢀ F2c )2.
Weighted R factors (Rw) and all goodness of fit S are based on F2;
conventional R factors (R) are based on F. All non-hydrogen atoms
were refined with anisotropic displacement parameters.
[17] SAINT
Madison, Wisconsin, USA, 2004.
[18] SHELXTL NT Version 6.12, Structure Determination Package, Bruker-Nonius AXS,
+ v7.12a, Area-Detector Integration Program, Bruker-Nonius AXS,
-
Madison, Wisconsin, USA, 2001.
[19] G.M. Sheldrick, SHELXS-97, Program for structure solution, Acta Crystallogr.,
Sect. A 46 (1990) 467.
Acknowledgements
[20] G.M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement,
Universität Göttingen, 1997.
This work was supported by the Ministerio de Ciencia e
Innovación, Spain
(Grant. Nos. CTQ2008-00318/BQU and