W.R. Dolbier Jr., Z. Zheng / Journal of Fluorine Chemistry 132 (2011) 389–393
393
extracted with CH2Cl2 (5 mL ꢀ 3), the solvent removed, and the
residue purified by column chromatography. Product 7f (0.12 g)
was obtained (95%) as a colorless oil: 1H NMR
5.04 (s, 2H), 6.43–
6.45 (m, 1H), 6.60 (s, 1H), 7.05 (s, 1H), 7.15–7.18 (m, 2H), 7.32–7.42
(m, 3H); 13C NMR
54.2, 107.3 (m), 120.1 (m), 120.4, 127.6, 128.6,
129.2, 136.2; 19F NMR
87.6 (p, J = 162 Hz, 1F), 70.8 (d, J = 163 Hz,
4F); HRMS calcd for C11H10F5NS 283.0454, found 283.0458; anal.
calcd for C11H10F5NS: C, 46.64; H, 3.56; N, 4.94. Found: C, 46.82; H,
3.55; N, 5.15.
128.36, 135.51, 145.32, 148.62 (m); 19F NMR
1F), 66.11 (d, J = 163 Hz, 4F).
d
83.00 (p, J = 152 Hz,
d
4.8.3. 3-Pentafluorosulfanyl-4-p-tolyl-dihydrothiophene (10d)
1H NMR
2.36 (s, 3H), 3.99 (s, 2H), 4.31–4.34 (t, J = 5.1 Hz, 2H),
7.06–7.08 (d, J = 8.1 Hz, 2H), 7.17–7.19 (d, J = 7.8 Hz, 2H); 13C NMR
21.43, 39.68, 44.09, 126.86, 129.12, 132.40, 138.34, 145.50, 148.34
(m); 19F NMR
83.12 (p, J = 153 Hz, 1F), 67.05 (d, J = 163 Hz, 4F).
d
d
d
d
d
4.9. Spectral and analytical data for thiophenes (11)
4.5. Preparation of 3-pentafluorosulfanyl-4-(3-thienyl)-2,5-dihydro-
pyrrole (8)
4.9.1. 3-Pentafluorosulfanyl-4-(30-thienyl)thiophene (11a)
1H NMR
d
7.07–7.08 (d, J = 4.8 Hz, 1H), 7.12–7.14 (m, 1H), 7.23–
7.24 (dd, J = 1.2, 2.1 Hz, 1H), 7.28–7.31 (dd, J = 3, 1.8 Hz, 1H), 7.85–
7.87 (d, J = 3.9 Hz, 1H); 13C NMR
124.7, 125.3, 128.3, 129.3, 134.6,
135.3, 150.3; 19F NMR
84.0 (m, 1F), 72.1 (d, J = 162 Hz, 4F). HRMS
Following the procedure of Renslo et al. [28], 1-chloroethyl
chloroformate (156 mg, 1.1 mmol) was added to a solution of 6a
(200 mg, 0.55 mmol) and triethylamine (55 mg, 0.55 mmol) in
2 mL CH2Cl2 at 0 8C with stirring. The mixture was then
concentrated after 30 min, dissolved in methanol (2 mL) and
stirred overnight. The solvent was then removed, and the residue
underwent column chromatography to produce 102 mg of
d
d
calcd for C8H5F5S3 291.9474, found 291.9504.
4.9.2. 3-Pentafluorosulfanyl-4-phenylthiophene (11c)
1H NMR
d
7.10–7.12 (m, 1H), 7.31–7.34 (m, 2H), 7.38–7.40 (m,
3H), 7.89–7.90 (d, J = 3.9 Hz, 1H); 13C NMR
125.02, 127.80,
128.10, 129.81, 136.07, 139.80, 150.65 (m); 19F NMR
84.11 (p,
colorless oil product 8 (68%): 1H NMR
2H), 4.19–4.21 (t, J = 7.2 Hz, 2H), 7.10–7.11 (d, J = 4.8 Hz, 1H), 7.26–
d
2.17 (s, 2H), 4.06 (m,
d
d
7.29 (m, 1H), 7.33–7.34 (m, 1H); 13C NMR
d
56.9 (m), 59.8, 125.2
J = 161 Hz, 1F), 72.08 (d, J = 162 Hz, 4F); HRMS calcd for C10H7F5S2
285.9909, found 285.9929; anal. calcd for C10H7F5S2: C, 41.95; H,
2.46. Found: C, 42.28; H, 2.49.
(m), 125.7, 127.5, 132.2, 139.1 (m), 147.1 (m); 19FNMR
d 84.2 (p,
J = 162 Hz, 1F), 67.4 (d, J = 164 Hz, 4F).
4.6. Preparation of 3-pentafluorosulfanyl-4-(3-thienyl)pyrrole (9)
4.9.3. 3-Pentafluorosulfanyl-4-p-tolylthiophene (11d)
mp 73–75 8C; 1H NMR
d
2.40 (s, 3H), 7.07 (m, 1H), 7.19 (s,, 4H),
7.87–7.88 (d, J = 3.9 Hz, 1H); 13C NMR
21.43, 124.93, 127.90,
128.50, 129.64, 133.09, 137.85, 139.77, 150.65 (m); 19F NMR
84.27 (p, J = 167 Hz, 1F), 72.55 (d, J = 162 Hz, 4F); HRMS calcd for
11H9F5S2 300.0066, found 300.0060; anal. calcd for C11H9F5S2: C,
DDQ (125 mg, 0.66 mmol) was added to a solution of 8 in CH2Cl2
at 0 8Cwithstirring,afterstandingfor2 h, themixturewassubmitted
to column directly. 95 mg of 9 as a colorless oil was obtained (95%):
d
d
1HNMR (CDCl3),
(m, 2H), 7.26–7.29 (m, 1H), 8.43 (s, 1H); 13CNMR,
(m), 123.2, 124.7, 129.6, 134.1, 136.6 (m); 19FNMR,
d
6.67 (s, 1H), 7.12–7.14(d, J = 5.1 Hz, 1H), 7.21–7.22
117.4 (m), 119.4
87.9 (p,
C
d
43.99; H, 3.02. Found: C, 43.91; H, 3.06.
d
J = 167 Hz, 1F), 75.5 (d, J = 163 Hz, 4F). HRMS calcd for C8H6F5NS2
274.9862, found 274.9864; anal. calcd for C8H6F5NS2: C, 34.91; H,
2.20; N, 5.09. Found: C, 35.29; H, 2.25; N, 4.75.
References
[1] D. O’Hagan, Chem. Soc. Rev. 37 (2008) 308–319.
[2] M. Schlosser, Angew. Chem. Int. Ed. 110 (1998) 1496–1513.
[3] K. Mueller, C. Faeh, F. Diederich, Science 317 (2007) 1881–1886.
[4] S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 37(2008) 320–330.
[5] K.L. Kirk, Org. Proc. Res. Dev. 12 (2008) 305–321.
4.7. General procedure for preparation of 4-
pentafluorosulfanylthiophenes
[6] D. O’Hagan, J. Fluorine, Chemistry 131 (2010) 1071–1081.
[7] D.S. Lim, J.S. Choi, C.S. Pak, J.T. Welch, J. Pestic. Sci. 32 (2007) 255–259.
[8] J.T. Welch, D.S. Lim, Bioorg. Med. Chem. 15 (2007) 6659–6666.
[9] F. Micheli, d. Andreotti, S. Braggio, A. Checchia, Bioorg. Med. Chem. Lett. 20 (2010)
4566–4568.
[10] P. Wipf, T. Mo, S.J. Geib, D. Caridha, G.S. Dow, L. Gerena, N. Roncal, E.E. Milner, Org.
Biomol. Chem. 7 (2009) 4163–4165.
[11] F.W. Hoover, D.D. Coffman, J. Org. Chem. 29 (1964) 3567–3570.
[12] C. Ye, G.L. Gard, R.W. Winter, R.G. Syvret, B. Twamley, J.M. Shreeve, Org. Lett. 9
(2007) 3841–3844.
TBAF (1.0 M in THF, 1.3–5 eq) was added to a mixture of
chloromethyl trimethylsilylmethyl sulfide (1.3–5 eq) and SF5-
alkyne (5a, c or d) (1 eq) in THF at room temperature. After stirring
for several hours (monitoring by 19F NMR), the reactions were
quenched by water and submitted to column chromatography.
Products 10a, c or d were obtained as white solids.
A solution of 10a, c or d in DCM was cooled to ꢁ30 8C, after
which sulfuryl chloride (2 eq) was added slowly during 10 min.
After stirring for another 30 min, the reaction was quenched by
water, and the organic phase was separated and dried by Na2SO4.
The solvent was evaporated, and the residue purified by column
chromatograph to give 11a, c, or d as white solids or colorless oils.
[13] A.G. Williams, N.R. Foster, WO9422817 (1994) (Aventis Crop Science);
Chem. Abstr. 123 (1994) 58831.
[14] S. Zahn, A.F. Nordquist, K.E. Minnich, G.S. Lal, W.F. Burgoyne, Jr., and A. Klauck-
Jacobs, USP 7,241,904 (2007);
Chem. Abstr. 145 (2007) 397957.
[15] Y. Huang, G.L. Gard, J.M. Shreeve, Tetrahedron Lett. 51 (2010) 6951–6954.
[16] W.R. Dolbier Jr., A. Mitani, W. Xu, I. Ghiviriga, Org. Lett. 8 (2006) 5573–5575.
[17] W.R. Dolbier Jr., Z. Zheng, J. Org. Chem. 74 (2009) 5626–5628.
[18] A. Padwa, W. Dent, J. Org. Chem. 52 (1987) 235–244.
[19] J.-P. Begue, D. Bonnet-Delpon, T. Lequeux, Tetrahedron Lett. 34 (1993) 3279–
3282.
4.8. Spectral data for dihydrothiophenes (10)
4.8.1. 3-Pentafluorosulfanyl-4-(30-thienyl)-dihydrothiophene (10a)
[20] D.Bonnet-Delpon,J.-P.Begue,T. Lequeux, M. Ourevitch,Tetrahedron52 (1996)59–70.
[21] Y. Terao, H. Kotaki, N. Imai, K. Achiwa, Chem. Pharm. Bull. 33 (1985) 2762–2766.
[22] R.A. Olofson, J.T. Martz, J.-P. Senet, M. Piteau, T. Malfroot, J. Org. Chem. 49 (1984)
2081–2082.
[23] A. Hosomi, Y. Matsuyama, H. Sakurai, J. Chem. Soc. Chem. Commun. (1986) 1073–
1074.
[24] A. Hosomi, K. Miura, Bull. Chem. Soc. Jpn. 77 (2004) 835–851.
[25] S. Karlsson, H.-E. Hogberg, Org. Lett. 1 (1999) 1667–1669.
[26] W.R. Dolbier Jr., Z. Zheng, 19th Int. Symp. Fluor. Chem., 2009, Paper No. 234.
[27] W.R. Dolbier Jr., S. Ait-Mohand, T.D. Schertz, T.A. Sergeeva, J.A. Cradlebaugh, A.
Mitani,G.L. Gard, R.W. Winter,J.S.Thrasher, J. Fluorine Chem. 127(2006)1302–1310.
[28] A.R. Renslo, H. Gao, P. Jaishankar, R. Venkatachalam, M.F. Gordeev, Org. Lett. 7
(2005) 2627–2630.
1H NMR
d
3.96–4.01 (m, 2H), 4.26–4.29 (t, J = 4.8 Hz, 2H), 6.96–
6.98 (d, J = 5.1 Hz, 1H), 7.19–7.20 (d, J = 1.8 Hz, 1H), 7.28–7.31 (dd,
J = 5.1 Hz, 1H); 13C NMR
d 39.54, 43.23, 123.82, 125.94, 127.12,
134.22, 140.91, 148.72 (m); 19F NMR
d 82.97 (p, J = 161 Hz, 1F),
66.11 (d, J = 164 Hz, 4F).
4.8.2. 3-Pentafluorosulfanyl-4-phenyl-dihydrothiophene (10c)
1H NMR
3.99–4.04 (m, 2H), 4.33–4.39 (t, J = 4.8 Hz, 2H), 7.17–
7.20 (m, 2H), 7.35–7.38 (m, 3H); 13C NMR
39.74, 44.10, 127.00,
d
d