Organic Letters
Letter
involvement of free-radical intermediates (Scheme 5). It is
believedthattheenolateformedafterdeprotonationof5mightbe
performing double duty to furnish the overall reaction. When
Cs2CO3 is used as the base, a phosphine reductant is required for
thereactiontooccur.9 Thestrongerbasesusedinourworkappear
to lead to the formation of enolate in higher concentration, which
allows it to be available as a reductant for the peroxide bond
cleavage, avoiding the requirement of additional phosphine
reductant. To validate the proposed mechanism, computational
studies were performed on a model reaction (see the SI) and the
actual reaction to give the product 2a. Transition-state structures
that are first-order saddle points were obtained. The transition-
state structure for the model compound (Figure S7a, SI) shows a
stretched peroxide bond (RO4−O5 = 1.68 Å) and the simultaneous
formation of a C−O bond with the reductant (RC7−O5 = 2.41 Å).
Furthermore, a hydrogen bond between the hydrogen atom on
REFERENCES
■
(1) Chen, B.-C.; Zhou, P.; Davis, F. A.; Ciganek, E.; Organic Reactions;
Overman, L. E., Ed.; Wiley: New York, 2003; Vol. 62, p 1.
(2) (a) Matsuda, H.; Yoshida, K.; Miyagawa, K.; Asao, Y.; Takayama, S.;
Nakashima, S.; Xu, F.; Yoshikawa, M. Bioorg. Med. Chem. 2007, 15, 1539.
(b) Olack, G.; Morrison, H. J. Org. Chem. 1991, 56, 4969. (c) Chen, B. C.;
Zhao, R.; Gove, S.; Wang, B.; Sundeen, J. E.; Salvati, M. E.; Barrish, J. C. J.
Org. Chem. 2003, 68, 10181. (d) Hewawasam, P.; Meanwell, N. A.;
Gribkoff, V. K.; Dworetzky, S. I.; Boissard, C. G. Bioorg. Med. Chem. Lett.
1997, 7, 1255. (e) Rasmussen, H. B.; MacLeod, J. K. J. Nat. Prod. 1997,
60, 1152.
(3) (a) Dietliker, K.; Murer, P.; Hsler, R.; Jung, T. PCT Int. Appl. US
20100104979, 2010. (b) Decker, C.; Viet, T. N. T.; Decker, D.; Weber-
Koehl, E. Polymer 2001, 42, 5531. (c) Nagase, H.; Hagio, H.; Ishikawa,
H.; Shimoju, N.; Yoshida, A.; Naito, Y. PCT Int. Appl. US
20150185368A1, 2015.
(4) (a) Ishimaru, T.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T.;
Kanemasa, S. J. Am. Chem. Soc. 2006, 128, 16488. (b) Davis, F. A.; Chen,
B.-C. Chem. Rev. 1992, 92, 919. (c) Voutyritsa, E.; Theodorou, A.;
Kokotos, C. G. Org. Biomol. Chem. 2016, 14, 5708. (d) Wang, T.; Jiao, N.
J. Am. Chem. Soc. 2013, 135, 11692. (e) Brodsky, B. H.; Du Bois, J. J. Am.
Chem. Soc. 2005, 127, 15391. (f) Odagi, M.; Furukori, K.; Yamamoto, Y.;
Sato, M.; Iida, K.; Yamanaka, M.; Nagasawa, K. J. Am. Chem. Soc. 2015,
137, 1909. (g) Watanabe, T.; Odagi, M.; Furukori, K.; Nagasawa, K.
Chem. - Eur. J. 2014, 20, 591. (h) Yang, Y.; Moinodeen, F.; Chin, W.; Ma,
T.; Jiang, Z.; Tan, C. H. Org. Lett. 2012, 14, 4762.
(5) Use of oxygen-/air-mediated transformation: (a) Stahl, S. S. Science
2005, 309, 1824. (c) Que, L.; Tolman, W. B. Nature 2008, 455, 333.
(d) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105,
2329. (f) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
(6) Examples of O2 fixation: (a) Pattillo, C. C.; Strambeanu, L. I.;
Calleja, P.; Vermeulen, N. A.; Mizuno, T.; White, M. C. J. Am. Chem. Soc.
2016, 138, 1265. (b)Das, P.;Saha, D.;Saha, D.; Guin, J. ACSCatal. 2016,
6, 6050. (c) Anson, C. W.; Ghosh, S.; Hammes-Schiffer, S.; Stahl, S. S. J.
Am. Chem. Soc. 2016, 138, 4186. (d) Brink, G.-J. T; Arends, I. W. C. E.;
Sheldon, R. A. Science 2000, 287, 1636. (e) Brice, J. L.; Harang, J. E.;
Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127,
2868. (f) Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654.
(g) Chiba, S.; Zhang, L.; Lee, J.-Y. J. Am. Chem. Soc. 2010, 132, 7266.
(h) Lyons, T. W.;Reinhard, C. T.;Planavsky, N. J. Nature2014, 506, 307.
(7) For some recent examples of metal-catalyzed oxygenation with O2
and air, see: (a) Rahman, M. T.; Nishino, H. Org. Lett. 2003, 5, 2887.
(b) Wang, H.; Wang, Y.; Liang, D.; Liu, L.; Zhang, J.; Zhu, Q. Angew.
Chem., Int. Ed. 2011, 50, 5678. (c) Wang, Z.-Q.; Zhang, W.-W.; Gong, L.-
B.; Tang, R.-Y.; Yang, X.-H.; Liu, Y.; Li, J.-H. Angew. Chem., Int. Ed. 2011,
50, 8968. (d) Zhang, C.; Jiao, N. J. Am. Chem. Soc. 2010, 132, 28.
(e) Zhang, C.; Xu, Z.; Zhang, L.; Jiao, N. Angew. Chem., Int. Ed. 2011, 50,
11088. (f) Zhang, L.; Bi, X.; Guan, X.; Li, X.; Liu, Q.; Barry, B.-D.; Liao, P.
Angew. Chem., Int. Ed. 2013, 52, 11303. (g) Hoover, J. M.; Ryland, B. L.;
Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 2357. (h) Campbell, A. N.; Stahl,
S. S. Acc. Chem. Res. 2012, 45, 851. (i) Boess, E.; Schmitz, C.; Klussmann,
M. J. Am. Chem. Soc. 2012, 134, 5317.
the peroxide and the carbonyl oxygen on the reductant (RO9−H6
=
2.08 Å) stabilizes the transition state. The transition state for the
ketone 2a has a very similar structure (Figure S7a, SI). The
calculated reactionbarrier, relativestability ofthe product andkey
geometrical parameters for 2a is shown in Figure S7a, SI. The
corresponding quantities for the model reaction are shown in the
In summary, we have developed a transition-metal-free,
efficient method for C−H hydroxylation of various ketones and
amides using inexpensive base and environmentally benign
atmospheric air as an oxidant. This methodology delivers a broad
array of substrates and provides an alternate route for the
synthesis of hydroxylated ketones and amides by avoiding the use
of hazardous phosphine-based reductant and expensive metal
catalyst. The detailed mechanistic study is in progress in our
laboratory.
ASSOCIATED CONTENT
■
S
* Supporting Information
TheSupportingInformationisavailablefreeofchargeontheACS
Experimental procedures, DFT computations, spectro-
scopic data for the compounds (PDF)
X-ray data for compound 2a (CIF)
X-ray data for compound 4l (CIF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(8) Chuang, G. J.; Wang, W.; Lee, E.; Ritter, T. J. Am. Chem. Soc. 2011,
133, 1760.
(9) Liang, Y.-F.; Jiao, N. Angew. Chem., Int. Ed. 2014, 53, 548.
(10) Sim, S-B. D.; Wang, M.; Zhao, Y. ACS Catal. 2015, 5, 3609.
(11) Tsang, A. S.-K.; Kapat, A.; Schoenebeck, F. J. Am. Chem. Soc. 2016,
138, 518.
Notes
The authors declare no competing financial interest.
(12) (a) Naganawa, Y.; Aoyama, T.; Nishiyama, H. Org. Biomol. Chem.
2015, 13, 11499. (b) Sano, D.; Nagata, K.; Itoh, T. Org. Lett. 2008, 10,
1593. (c) Sai Prathima, P. S.; Rajesh, P.; Rao, J. V.; Kailash, U. S.; Sridhar,
B.; Rao, M. M. Eur. J. Med. Chem. 2014, 84, 155. (d) Gutierrez, E. G.;
Wong, C. J.; Sahin, A. H.; Franz, A. K. Org. Lett. 2011, 13, 5754. (e) Kong,
D.-L.;Cheng, L.;Yue, T.;Wu,H.-R.;Feng,W. C.;Wang, D.;Liu, L. J. Org.
Chem. 2016, 81, 5337.
ACKNOWLEDGMENTS
■
This research was supported by the DST-SERB, (EMR/2014/
000700), India. M.B.C. thanks IISER-Pune for a research
fellowship. B.G. thanks IISER-Pune and MHRD-India for the
research support. We gratefully acknowledge Prof. Dr. T. K.
Paine, Department of Inorganic Chemistry, IACS, Kolkata, India,
for allowing us to perform isotope-labeling experiments and Mr.
Sridhar Banerjee, IACS, Kolkata, India, for help with labeling
studies.
D
Org. Lett. XXXX, XXX, XXX−XXX