1100
T.-J. Du et al. / Tetrahedron 67 (2011) 1096e1101
excess Ac2O could also be easily recovered via distillation and
wastes were minimized or eliminated. This direct transformation
procedure including mild conditions, atom economy, and envi-
ronmentally benign recycling should provide protecting groups
with a new era of usefulness.
170.6; HRMS(ESI), calcd for C14H20O7S, m/z 332.0930; found, m/z
355.0921 (MþNa)þ.
4.2.5. 1,3-Diacetoxy acetone 14. Colorless oil, 1H NMR (CDCl3):
dH¼2.18 (s, 6H), 4.76 (s, 4H); 13C NMR (CDCl3): dC¼20.6, 66.5, 170.3,
198.1; HRMS(ESI), calcd for C7H10O5, m/z 174.0528; found, m/z
197.0519 (MþNa)þ.
4. Experimental
4.1. General
4.2.6. 4-Acetoxy-3-methoxybenzaldehyde. 1H NMR (CDCl3): dH¼2.36
(s, 3H), 3.91(s, 3H), 7.25(d, J¼8.0 Hz,1H), 7.52 (m, 2H), 9.98(s,1H); 13C
NMR (CDCl3): dC¼20.7, 56.1, 110.8, 123.4, 124.8, 135.2, 144.9, 151.9,
168.4,191.1; HRMS(ESI), calcd for C10H10O4, m/z 194.0579; found, m/z
217.0569 (MþNa)þ.
Dichloromethane was dried over P2O5 and distilled. Acetic
anhydride was distilled before being used. All reactions were
monitored by thin layer chromatography (TLC) on gel F254
plates. 1H NMR and 13C NMR spectra were recorded on a Varian
Mercury 400 spectrometer or a Bruker AV500 spectrometer in
CDCl3 or DMSO-d6 and using TMS as internal standard. Exact
mass measurements were performed on a LCMS2010 spec-
trometer equipped with a standard electrospray ionization (ESI)
interface.
4.2.7. (R)-3-Acetoxy-2-((tert-butyldiphenylsilyl)oxy)propyl benzoate
36. 1H NMR (CDCl3): dH¼1.08 (s, 9H),1.93 (s, 3H), 4.17 (dd, J¼1.2 and
4.0 Hz, 2H), 4.23 (m, 1H), 4.34 (m, 2H), 7.34e7.46 (m, 8H), 7.57 (t,
J¼6.0 Hz, 1H), 7.68 (t, J¼6.0 Hz, 4H), 7.94 (d, J¼6.0 Hz, 2H); 13C NMR
(CDCl3): dC¼20.7, 26.8, 29.7, 65.4, 65.7, 69.4, 27.7, 128.4, 129.7, 129.9,
133.0, 135.8, 166.2, 170.7; HRMS(ESI), calcd for C28H32O5Si, m/z
476.2019; found, m/z 499.2026 (MþNa)þ.
4.2. General procedure for direct transformation
General procedure: HClO4eSiO2 (0.5 mmol/g; 50 mg) was added
to a stirred solution of substrate (1.0 mmol) and Ac2O (0.45 mL,
5.0 mmol) in CH2Cl2 (5 mL) at rt or heated under reflux. After
complete conversion and filtration to remove the catalyst, satu-
rated aqueous solution of NaHCO3 (10 mL) was added and sepa-
rated. The aqueous solution was extracted with CH2Cl2 (2ꢀ10 mL).
The organic layer was combined, washed with brine (10 mL), dried
(MgSO4), and concentrated under reduced pressure. The residual
was isolated through short column chromatography on silica gel,
which was eluted with ethyl acetateepetroleum (bp 60e90 ꢁC) to
give the target products.
Acknowledgements
Financial support of this work from the Ministry of Science and
Technology of China (2006AA100216) is appreciated.
Supplementary data
Supplementary data related with this article can be found online
files and InChiKeys of the most important compounds described in
this article.
All new products were characterized by 1H NMR, 13C NMR and
HRMS (ESI) spectra and the NMR data for known compounds
matched that reported in literature.
References and notes
ꢀ
4.2.1. Aceyl 5-O-acetyl-3-O-TBDMS-2-O-(20-acetoxyisopropyl)-
b-D-
2. (a) Kocienski, P. J. Protecting Groups; Georg Thieme: Stuttgart: New York, NY,
2004; (b) Somoza, A. Chem. Soc. Rev. 2008, 37, 2668e2675; (c) Stamatov, D. S.;
Stawinski, J. Org. Biomol. Chem. 2010, 8, 463e477.
3. (a) Crouch, R. D. Tetrahedron 2004, 60, 5833e5836; (b) Wu, Q.-P.; Wang, Y.;
Chen, W.; Wang, H.; Liu, H. Lett. Org. Chem. 2006, 3, 13e15.
4. Kunz, H.; Unverzagt, C. Angew. Chem., Int. Ed. Engl. 1988, 27, 1697e1698.
5. (a) Stamatov, S. D.; Stawinski, J. Org. Biomol. Chem. 2007, 5, 3787e3800;
(b) Stamatov, S. D.; Kullberg, M.; Stawinski, J. Tetrahedron Lett. 2005, 46,
6855e6859.
6. Ganem, B.; Small, V. R. J. Org. Chem. 1974, 39, 3728e3730.
7. Chandra, K. L.; Saravanan, P.; Singh, V. K. Tetrahedron Lett. 2001, 42, 5309e5312.
8. Mineno, T. Tetrahedron Lett. 2002, 43, 7975e7978.
xylofuranoside 2. 1H NMR (CDCl3): dH¼0.13 (s, 6H, CH3), 0.9 (s, 9H,
CH3), 1.48 (s, 6H, CH3), 2.08 (m, 9H, CH3), 4.05 (t, J¼4.0 Hz, 1H), 4.22
(dd, J¼3.6 and 12.0 Hz, 1H), 4.28 (m, 1H), 4.35 (dd, J¼3.6 and
12.0 Hz, 1H), 5.19 (t, J¼4.0 Hz, 1H), 6.33 (d, J¼2.4 Hz, 1H); 13C NMR
(CDCl3): dC¼ꢂ0.5, 18.2, 21.0, 21.3, 21.4, 25.7, 25.8, 25.8, 26.8, 69.7,
72.0, 81.9, 96.8, 113.4, 170.5, 170.8.
4.2.2. Aceyl 3,5-di-O-acetyl-2-O-(20-acetoxyisopropyl)-
b-D-xylofur-
anoside 3. 1H NMR (CDCl3): dH¼1.45 (s, 3H, CH3), 1.46 (s, 3H, CH3),
2.05 (s, 3H, CH3), 2.06 (s, 3H, CH3), 2.07 (s, 3H, CH3), 2.10 (s, 3H,
CH3), 4.10 (dd, J¼3.6 and 8.0 Hz, 1H), 4.35 (dd, J¼10.4 and 18.4 Hz,
1H), 5.33 (t, J¼3.6 Hz, 2H), 6.16 (d, J¼1.6 Hz, 1H); 13C NMR (CDCl3):
dC¼13.6, 13.7, 13.8, 14.1, 19.9, 22.7, 54.9, 62.4, 62.5, 73.3, 89.4, 106.8,
162.9, 162.9, 162.9, 163.5.
9. Oriyama, T.; Oda, M.; Gono, J.; Koga, G. Tetrahedron Lett. 1994, 35, 2027e2030.
10. Kim, S.; Lee, W. J. Synth. Commun. 1986, 16, 659e664.
11. Chandrasekhar, S.; Ramachander, T.; Reddy, M. V.; Takhi, M. J. Org. Chem. 2000,
65, 4729e4731.
12. Reddy, C. S.; Smitha, G.; Chandrasekhar, S. Tetrahedron Lett. 2003, 44,
4693e4695.
13. Brar, A.; Vankar, Y. D. Tetrahedron Lett. 2006, 47, 5207e5210.
14. Wu, Q.-P.; Zhou, M.-X.; Xi, X.-D.; Song, D.; Wang, Y.; Liu, H.-X.; Li, Y.-Z.; Zhang,
Q.-S. Tetrahedron Lett. 2008, 49, 2714e2718.
4.2.3. Acetyl 3-O-acetyl-5-O-benzoyl-2-O-(20-acetoxyisopropyl)-
b-D-
15. (a) Sharma, U. Synlett 2009, 3219e3220; (b) Sartori, G. Chem. Rev. 2004, 104,
199e250.
xylofuranoside 5. 1H NMR (CDCl3): dH¼1.48 (s, 3H, CH3), 1.51 (s, 3H,
CH3), 2.06 (s, 3H, CH3), 2.09 (s, 3H, CH3), 2.14 (s, 3H, CH3), 4.45 (m,
2H), 4.55 (dd, J¼4.0 and 12.0 Hz, 1H), 5.45 (dd, J¼4.0 and 12.0 Hz,
1H), 5.53 (m, 1H), 6.22 (d, J¼2.0 Hz, 1H), 7.46 (m, 2H, C6H5), 7.57 (m,
1H, C6H5), 8.02 (m, 2H, C6H5); 13C NMR (CDCl3): dC¼20.9, 21.1, 21.4,
26.9, 27.2, 29.9, 62.9, 69.8, 69.8, 80.6, 96.6, 114.1, 128.7, 129.9, 133.6,
170.1.
16. (a) Chakraborti, A. K.; Gulhane, R. J. Chem. Soc., Chem. Commun. 2003,1896e1897;
(b) Das, B.; Venkateswarlu, K.; Suneel, K.; Majhi, A. Tetrahedron Lett. 2007, 48,
5371e5374 The recovered catalyst was reused three times with only a little
variation in the yields of the products. For example, the catalyst was used in four
consecutive runs for direct conversion of compound 1 to 2 in the yields of 94%,
92%, 91%, and 90%, respectively (reaction time: 30 min in each case)..
17. (a) Liu, H.; Wu, Q.-P.; Chen, X.; Xi, X.-D.; Zhang, Q.-S.; Li, Y.-Z. Carbohydr. Res.
2009, 344, 2342e2348; (b) Yu, J.-L.; Wu, Q.-P.; Zhang, Q.-S.; Li, Y.-Z.; Liu, Y.;
Zhou, Z.-M. Bioorg. Med. Chem. Lett. 2010, 20, 240e243.
18. Harry, V.; Helmut, Z. Chem. Ber. 1960, 93, 137e138.
19. Kumar, A.; Doddi, V. R.; Vankar, Y. D. J. Org. Chem. 2008, 73, 5993e5995.
20. (a) Rees, C. B.; Wu, Q.-P. Org. Biomol. Chem. 2003, 1, 1553e1561; (b) Wu, Q.-P.;
Simons, C. Synthesis 2004, 1533e1555.
21. Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190e6192.
22. Blass, E. B.; Harris, C. L.; Portlock, E. D. Tetrahedron Lett. 2001, 42, 1611e1613.
4.2.4. 1-Acetoxy-3-tosyloxy-2,2-dimethoxypropane 12. Colorless oil,
1H NMR (CDCl3): dH¼1.94 (s, 3H), 2.45 (s, 3H), 3.17 (s, 6H), 3.99 (s,
2H), 4.05 (s, 2H), 7.35 (d, J¼8.0 Hz, 2H), 7.81 (d, J¼8.4 Hz, 2H); 13C
NMR (CDCl3): dC¼21.8, 29.9, 48.6, 59.7, 64.5, 98.6, 128.3, 130.1, 145.9,