cyclization using Pd-catalysts,11 and acid-catalyzed cy-
clization followed by aromatization.12 The synthesis
of indolocarbazoles has also been achieved through
nitrene13 and carbene14 insertion reactions and through
ring-closing metathesis.15 Recently, Orito and co-work-
ers achieved the staurosporinone framework by the
reduction of a 5-cyano indolo[2,3-a]carbazole followed
by a Pd-mediated carbonylation reaction.16 Howard-
Jones and Walls established a biosynthetic route to
staurosporine and rebeccamycin aglycons from chro-
mopyrrolic acid.17
It is important to bear in mind that most of the indolo-
carbazoles, which exhibit potent biological activities, have
substituents on the benzene portion of the core. Despite the
synthetic efforts for indolocarbazoles mentioned above,
there remains a need for a flexible and efficient route.
Previously, we reported the synthesis of quino[4,3-b]carba-
zole analogs,18 a precursor of calothrixin19 which involved
a thermal electrocyclization in the key step. In a continua-
tion of these synthetic studies on carbazole analogs,20 we
report herein our results on the assembly of an unsymme-
trical indolocarbazole framework from 2-methylindole.
This methodology involves thermal electrocyclization of
2,3-divinylindole 7 followed by allylic bromination and
amidation to give 9. The carbazole 9 was subjected to a
nitrene insertion reaction followed by hydrolysis to afford
the target compound 10 (Scheme 1).
Figure 1. Structures of biologically important indolocarbazoles.
€
Recently, Knolker and Reddy extensively reviewed the
synthesis and biological activity of carbazole alkaloids,
wherein different synthetic strategies for indolocarba-
zole alkaloids were discussed.9 The synthesis proto-
cols outlined to date for indolocarbazoles are based
on readily available bisindolylmaleimides and involve
electrocyclization under photochemical conditions,10
Scheme 1. Schematic Pathway for Staurosporine Aglycon
(8) (a) Boudreault, P. -L. T.; Virkar, A. A.; Bao, Z.; Leclerc, M. Org.
Electron. 2010, 11, 1649–1659. (b) Zhou, E.; Cong, J.; Tajima, K.;
Hashimoto, K. Chem. Mater. 2010, 22, 4890–4895. (c) Boudreault, P. -L.;
Wakim, S.; Tang, M. L.; Tao, Y.; Bao, Z.; Leclerc, M. J. Mater. Chem. 2009,
19, 2921–2928. (d) Qi, T.; Qiu, W.; Liu, Y.; Zhang, H.; Guo, X.; Liu, Y.; Lu,
K.; Du, C.; Yu, G.; Zhu, D. J. Org. Chem. 2008, 73, 4638–4643. (e)
Tsuchimoto, T.; Matsubayashi, H.; Kaneko, M.; Nagase, Y.; Maiyamura,
T.; Shirakawa, E. J. Am. Chem. Soc. 2008, 130, 15823–15835. (f) Li, Y.; Wu,
S.; Gardner, S.; Ong, B. S. Adv. Mater. 2005, 17, 849–853. (g) Boudreault, P.-
L. T.; Wakim, S.; Blovin, N.; Simard, M.; Tessier, C.; Tao, Y.; Leclerc, M. J.
Am. Chem. Soc. 2007, 129, 9125–9136.
€
(9) Knolker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303–4427.
(10) (a) Faul, M. M.; Engler, T. A.; Sullivan, K. A.; Grutsch, J. L.;
Clayton, M. T.; Martinelli, M. J.; Pawlak, J. M.; LeTourneau, M.; Scott
Coffey, D.; Pedersen, S. W.; Kolis, S. P.; Furness, K.; Malhotra, S.;
Al-awar, R. S.; Ray, J. E. J. Org. Chem. 2004, 69, 2967–2975. (b) Reddy,
^
M.; Chen, S.-Y.; Uang, B.-J. Synthesis 2003, 4, 497–500. (c) Gaudencio,
(12) (a) Witulski, B.; Schweikert, T. Synthesis 2005, 12, 1959–1966.
(b) Chisholm, J. D.; Van Vranken, D. L. J. Org. Chem. 2000, 65, 7541–
7553. (c) Mahboobi, S.; Eibler, E.; Koller, M.; Sunil Kumar, K. C.;
Popp, A. J. Org. Chem. 1999, 64, 4697–4704. (d) Magnus, P. D.; Sear,
N. L. Tetrahedron 1984, 40, 2795–2797.
S. P.; Santos, M. M. M.; Lobo, A. M.; Prabhakar, S. Tetrahedron Lett.
2003, 44, 2577–2578. (d) Sanchez-Martinez, C.; Faul, M. M.; Shih, C.;
Sullivan, K. A.; Grutsch, J. L.; Cooper, J. T.; Kolis, S. P. J. Org. Chem.
2003, 68, 8008–8014. (e) Bergmann, J.; Koch, E.; Pelcman, B. J. Chem.
Soc., Perkin Trans. 1 2000, 2609–2614. (f) Link, J. T.; Raghavan, S.;
Gallant, M.; Danishefsky, S. J.; Chou, T. C.; Ballas, L. M. J. Am. Chem.
Soc. 1996, 118, 2825–2842. (g) Joyce, R. P.; Gainor, J. A.; Weinreb, S.
J. Org. Chem. 1987, 52, 1177–1185. (i) M. Sarstedt, B.; Winterfeldt, E.
Heterocycles 1983, 20, 469–476.
(11) (a) Wang, K.; Liu, Z. Synth. Commun. 2010, 40, 144–150.
(b) Delarue-Cochin, S.; McCort-Tranchepain, I. Org. Biomol. Chem.
2009, 7, 706–716. (c) Wang, J.; Rosingana, M.; Watson, D. J.; Dowdy,
E. D.; Discordia, R. P.; Soundarajan, N.; Li, W.-L. Tetrahedron Lett.
2001, 42, 8935–8937. (d) Faul, M. M.; Winneroski, L. L.; Krumrich,
C. A. J. Org. Chem. 1999, 64, 2465–2470. (e) Zembower, D. E.; Zhang,
H.; Lineswala, J. P.; Kuffel, M. J.; Aytes, S. A.; Ames, M. M. Bioorg.
Med. Chem. Lett. 1999, 9, 145–150. (f) Faul, M. M.; Winneroski, L. L.;
Krumrich, C. A. J. Org. Chem. 1998, 63, 6053–6058. (g) Ohkubo, M.;
Kawamoto, H.; Ohno, T.; Nakano, M.; Morishima, H. Tetrahedron
1996, 52, 8099–8112. (h) Saulnier, M. G.; Frennesson, D. B.; Deshpande,
M. S.; Vyas, D. M. Tetrahedron Lett. 1995, 36, 7841–7844.
(13) (a) Balaji, G.; Shim, W. L.; Parameswaran, M.; Valiyaveettil, S.
Org. Lett. 2009, 11, 4450–4453. (b) Alonso, D.; Caballero, E.; Medarde,
M.; Tome, F. Tetrahedron Lett. 2005, 46, 4839–4841. (c) Freeman,
A. W.; Urvoy, M.; Criswell, M. E. J. Org. Chem. 2005, 70, 5014–5019.
(d) Kuethe, J. T.; Wong, A.; Davies, I. W. Org. Lett. 2003, 5, 3721–3723.
(e) Adeva, M.; Buono, F.; Caballero, E.; Medarde, M.; Tome, F. Synlett
2000, 832–834. (f) Lowinger, T. B.; Chu, J.; Spence, P. L. Tetrahedron
Lett. 1995, 36, 8383–8386. (g) Moody, C. J.; Rahimtoola, K. F.; Porter,
B.; Ross, B. C. J. Org. Chem. 1992, 57, 2105–2114. (h) Hughes, I.; Nolan,
W. P.; Raphael, R. A. J. Chem. Soc., Perkin Trans. 1 1990, 2475–2480.
(14) (a) Wood, J. L.; Stoltz, B. M.; Dietrich, H. J.; Plum, D. A.;
Petsch, D. J. J. Am. Chem. Soc. 1997, 119, 9641–9651. (b) Bergmann, J.;
Koch, E.; Pelcman, B. Tetrahedron 1995, 51, 5631–5642.
(15) (a) Wilson, L. J.; Yang, C.; Murray, W. V. Tetrahedron Lett.
2007, 48, 7399–7403. (b) Pelly, S. C.; Parkinson, C. J.; van Otterlo,
W. A. L.; de Koning, C. B. J. Org. Chem. 2005, 70, 10474–10481.
Org. Lett., Vol. 13, No. 6, 2011
1419