Molecular Pharmaceutics
ARTICLE
the National Natural Science Foundation of China (Grant No.
30971456) and in part by the National High-Tech R & D
Program of China (863 Program; Grant No. 2007AA10Z344).
(21) Montelione, G. T.; W€uthrich, K.; Nice, E. C.; Burgess, A. W.;
Scheraga, H. A. Solution structure of murine epidermal growth factor:
determination of the polypeptide backbone chain-fold by nuclear
magnetic resonance and distance geometry. Proc. Natl. Acad. Sci. U.S.A.
1987, 84, 5226–5230.
(22) Koide, H.; Muto, Y.; Kasai, H.; Kohri, K.; Hoshi, K.; Takahashi,
S.; Tsukumo, K.; Sasaki, T.; Oka, T.; Miyake, T. A site-directed
mutagenesis study on the role of isoleucine-23 of human epidermal
growth factor in the receptor binding. Biochim. Biophys. Acta 1992, 1120,
257–261.
(23) Wingens, M.; Walma, T.; van Ingen, H.; Stortelers, C.; van
Leeuwen, J. E.; van Zoelen, E. J.; Vuister, G. W. Structural analysis of an
epidermal growth factor/transforming growth factor-alpha chimera with
unique ErbB binding specificity. J. Biol. Chem. 2003, 278, 39114–39123.
(24) Ogiso, H.; Ishitani, R.; Nureki, O.; Fukai, S.; Yamanaka, M.;
Kim, J. H.; Saito, K.; Sakamoto, A.; Inoue, M.; Shirouzu, M.; Yokoyama,
S. Crystal structure of the complex of human epidermal growth factor
and receptor extracellular domains. Cell 2002, 110, 775–787.
(25) Komoriya, A.; Hortsch, M.; Meyers, C.; Smith, M.; Kanety, H.;
Schlessinger, J. Biologically active synthetic fragments of epidermal
growth factor: localization of a major receptor-binding region. Proc.
Natl. Acad. Sci. U.S.A. 1984, 81, 1351–1355.
(26) Wilson, C. L.; Monteith, W. B.; Danell, A. S.; Burns, C. S.
Purification and characterization of the central segment of prothymosin-
alpha: methodology for handling highly acidic peptides. J. Pept. Sci. 2006,
12, 721–725.
(27) Nagy, A.; Schally, A. V.; Armatis, P.; Szepeshazi, K.; Halmos, G.;
Kovacs, M.; Zarandi, M.; Groot, K.; Miyazaki, M.; Jungwirth, A.; Horvath, J.
Cytotoxic analogs of luteinizing hormone-releasing hormone containing
doxorubicin or 2-pyrrolinodoxorubicin, a derivative 500-1000 times more
potent. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 7269–7273.
’ REFERENCES
(1) Gewirtz, D. A. A critical evaluation of the mechanisms of action
proposed for the antitumor effects of the anthracycline antibiotics
adriamycin and daunorubicin. Biochem. Pharmacol. 1999, 57, 727–741.
(2) Lal, S.; Mahajan, A.; Chen, W. N.; Chowbay, B. Pharmacoge-
netics of target genes across doxorubicin disposition pathway: a review.
Curr. Drug Metab. 2010, 11, 115–128.
(3) Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L.
Anthracyclines: molecular advances and pharmacologic developments
in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004, 56, 185–
229.
(4) Thornton, K. Chemotherapeutic management of soft tissue
sarcoma. Surg. Clin. North Am. 2008, 88, 647–660.
(5) Raschi, E.; Vasina, V.; Ursino, M. G.; Boriani, G.; Martoni, A.; De
Ponti, F. Anticancer drugs and cardiotoxiciy: Insights and perspectives in
the era of targeted therapy. Pharmacol. Ther. 2010, 125, 196–218.
(6) Mordente, A.; Meucci, E.; Silvestrini, A.; Martorana, G. E.;
Giardina, B. New developments in anthracycline-induced cardiotoxicity.
Curr. Med. Chem. 2009, 16, 1656–1672.
(7) Ferreira, A. L.; Matsubara, L. S.; Matsubara, B. B. Anthracycline-
induced cardiotoxicity. Cardiovasc. Hematol. Agents Med. Chem. 2008, 6,
278–281.
(8) Langer, M.; Kratz, F.; Rothen-Rutishauser, B.; Wunderli-Allen-
spach, H.; Beck-Sickinger, A. G. Novel peptide conjugates for tumor-
specific chemotherapy. J. Med. Chem. 2001, 44, 1341–1348.
(9) Nagy, A.; Schally, A. V. Targeting of cytotoxic luteinizing
hormone-releasing hormone analogs to breast, ovarian, endometrial,
and prostate cancer. Biol. Reprod. 2005, 73, 851–859.
(28) Chen, Q.; Sowa, D. A.; Gabathuler, R. Synthesis of doxorubicin
conjugates through 14-hydroxy group to melanotransferrin P97. Synth.
Commun. 2003, 33, 2389–2398.
(10) de Groot, F. M.; Broxterman, H. J.; Adams, H. P.; van Vliet, A.;
Tesser, G. I.; Elderkamp, Y. W.; Schraa, A. J.; Kok, R. J.; Molema, G.;
Pinedo, H. M.; Scheeren, H. W. Design, synthesis, and biological
evaluation of a dual tumor-specific motive containing integrin-targeted
plasmin-cleavable doxorubicin prodrug. Mol. Cancer Ther. 2002, 1, 901–
911.
(11) Qian, Z. M.; Li, H.; Sun, H.; Ho, K. Targeted drug delivery via
the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev.
2002, 54, 561–587.
(12) Schally, A. V.; Nagy, A. New approaches to treatment of various
cancers based on cytotoxic analogs of LHRH, somatostatin and bombe-
sin. Life Sci. 2003, 72, 2305–2320.
(13) van Hensbergen, Y.; Broxterman, H. J.; Elderkamp, Y. W.;
Lankelma, J.; Beers, J. C.; Heijn, M.; Boven, E.; Hoekman, K.; Pinedo,
H. M. A doxorubicin-CNGRC conjugate with prodrug properties.
Biochem. Pharmacol. 2002, 63, 897–908.
(14) Emons, G.; Sindermann, H.; Engel, J.; Schally, A. V.; Gr€undker,
C. Luteinizing hormone-releasing hormone receptor-targeted che-
motherapy using AN-152. Neuroendocrinology 2009, 90, 15–18.
(15) Dutta, P. R.; Maity, A. Cellular responses to EGFR inhibitors
and their relevance to cancer therapy. Cancer Lett. 2007, 254, 165–177.
(16) Herbst, R. S. Review of epidermal growth factor receptor
biology. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 21–26.
(17) Harari, P. M.; Allen, G. W.; Bonner, J. A. Biology of interac-
tions: antiepidermal growth factor receptor agents. J. Clin. Oncol. 2007,
25, 4057–4065.
(18) Okamoto, I. Epidermal growth factor receptor in relation to
tumor development: EGFR-targeted anticancer therapy. FEBS. J. 2010,
277, 309–315.
(19) Schneider, M. R.; Wolf, E. The epidermal growth factor
receptor ligands at a glance. J. Cell Physiol. 2009, 218, 460–466.
(20) Cooke, R. M.; Wilkinson, A. J.; Baron, M.; Pastore, A.; Tappin,
M. J.; Campbell, I. D.; Gregory, H.; Sheard, B. The solution structure of
human epidermal growth factor. Nature 1987, 327, 339–341.
(29) Bai, L.; Zhu, R.; Chen, Z.; Gao, L.; Zhang, X.; Wang, X.; Bai, C.
Potential role of short hairpin RNA targeting epidermal growth factor
receptor in growth and sensitivity to drugs of human lung adenocarci-
noma cells. Biochem. Pharmacol. 2006, 71, 1265–1271.
(30) Bidwell, G. L., 3rd.; Davis, A. N.; Fokt, I.; Priebe, W.; Raucher,
D. A thermally targeted elastin-like polypeptide-doxorubicin conjugate
overcomes drug resistance. Invest. New Drugs 2007, 25, 313–326.
(31) Overholser, J. P.; Prewett, M. C.; Hooper, A. T.; Waksal, H. W.;
Hicklin, D. J. Epidermal growth factor receptor blockade by antibody
IMC-C225 inhibits growth of a human pancreatic carcinoma xenograft
in nude mice. Cancer 2000, 89, 74–82.
(32) Abbosh, P. H.; Montgomery, J. S.; Starkey, J. A.; Novotny, M.;
Zuhowski, E. G.; Egorin, M. J.; Moseman, A. P.; Golas, A.; Brannon,
K. M.; Balch, C.; Huang, T. H.; Nephew, K. P. Dominant-negative
histone H3 lysine 27 mutant derepresses silenced tumor suppressor
genes and reverses the drug-resistant phenotype in cancer cells. Cancer
Res. 2006, 66, 5582–5591.
(33) Pang, Z.; Feng, L.; Hua, R.; Chen, J.; Gao, H.; Pan, S.; Jiang, X.;
Zhang, P. Lactoferrin-conjugated biodegradable polymersome holding
doxorubicin and tetrandrine for chemotherapy of glioma rats. Mol.
Pharmaceutics 2010, 7, 1995–2005.
(34) Cao, N.; Feng, S. S. Doxorubicin conjugated to D-alpha-
tocopheryl polyethylene glycol 1000 succinate (TPGS): conjugation
chemistry, characterization, in vitro and in vivo evaluation. Biomaterials
2008, 29, 3856–3865.
(35) Mosmann, T. Rapid colorimetric assay for cellular growth and
survival: application to proliferation and cytotoxicity assays. J. Immunol.
Methods 1983, 65, 55–63.
(36) Han, L.; Wang, W.; Fang, Y.; Feng, Z.; Liao, S.; Li, W.; Li, Y.; Li,
C.; Maitituoheti, M.; Dong, H.; Lai, W.; Gao, Q.; Xi, L.; Wu, M.; Wang,
D.; Zhou, J.; Meng, L.; Wang, S.; Ma, D. Soluble B and T lymphocyte
attenuator possesses antitumor effects and facilitates heat shock protein
70 vaccine-triggered antitumor immunity against a murine TC-1 cervical
cancer model in vivo. J. Immunol. 2009, 183, 7842–7850.
385
dx.doi.org/10.1021/mp100243j |Mol. Pharmaceutics 2011, 8, 375–386