properties.8 These reactions have been extensively studied
by the groups of Buchwald and Hartwig.9 Over the past
decade Pd based catalyst systems using phosphine ligands
have been developed,10 and these systems were very useful in
both industrial and academic laboratories11 on both a
minute and very large scale. While Pd catalyzed amidations
of bromo and iodo compounds were well established,12 and
the amidation of chloro compounds was not. These results
prompted us to explore the Pd catalyzed amidation of
3-acetyl-2-chloroindoles.
Table 1. Optimization of the Pd-Catalyzed Cross-Coupling of
1-(2-Chloro-1-(phenylsulfonyl)-1H-indol-3-yl)ethanone and
Benzamidea
The Vilsmeier-Haack reaction is an efficient and eco-
nomical method fortheformylationofreactivearomatic,13
heteroaromatic,14 and conjugated carbocyclic systems.15
This reaction has great importance in various synthetic
methodologies,16 and the results are noteworthy and ex-
alting. In the literature the synthetic methods for the R-
carbolines involve annulation of the pyridine ring onto
indole derivatives;17 multistep processes having poor yields
and cyclizations of azaindoles18 have been used. Due to the
ubiquity of R-carbolines in many biologically active mole-
cules we are exploring the synthetic methodology for the R-
carboline through the Pd catalyzed cross-coupling amida-
tion reactions of 3-acetyl-2-chloroindoles followed by
cyclization with the Vilsmeier-Haack reaction.
entry
Pd source
Pd(OAc)2
base
solvent
yield(%)b
1
K2CO3
K2CO3
Cs2CO3
Cs2CO3
K2CO3
K3PO4
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
K2CO3
K3PO4
t-BuOK
Cs2CO3
Cs2CO3
Cs2CO3
K2CO3
Cs2CO3
Cs2CO3
K2CO3
toluene
toluene
toluene
toluene
dioxane
toluene
toluene
t-BuOH
DMSO
t-BuOH
t-BuOH
t-BuOH
t-BuOH
DME
49
27
41
56
39
43
41
35
20
95
84
76
62
67
45
21
10
40
32
35
2
PdCl2
3
PdCl2(PPh3)2
[(allyl)PdCl]2
Pd(OAc)2/H2O Act
Pd(OAc)2/H2O Act
Pd(OAc)2/H2O Act
Pd(OAe)2/H2O Act
Pd(OAc)2/H2O Act
Pd2((dba)3
Pd2(dba)3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Pd2(dba)3
Pd2(dba)3
Pd2(dba)3
Pd2(dba)3
toluene
DMSO
DMF
Pd2(dba)3
(8) (a) Goodson, F. E.; Hartwig, J. F. Macromolecules 1998, 31,
1700–1703. (b) Kanbara, T.; Oshima, M.; Imayasu, T.; Hasegawa, K.
Macromolecules 1998, 31, 8725–8730. (c) Singer, R. A.; Sadighi, J. P.;
Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 213–214.
(9) (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc.
Chem. Res. 1998, 31, 805–818. (b) Hartwig, J. F. Angew. Chem., Int. Ed.
1998, 37, 2046–2067.
(10) (a) Klapars, A.; Campos, K. R.; Chen, C.; Volante, R. P. Org.
Lett. 2005, 7, 1185–1188. (b) Huang, X.; Anderson, K. W.; Zim, D.;
Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125,
6653–6655. (c) Shen, Q.; Hartwig, J. F. J. Am. Chem. Soc. 2007, 129,
7734–7735. (d) McLaughlin, M.; Palucki, M.; Davies, I. W. Org. Lett.
2006, 8, 3311–3314. (e) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002,
124, 6043–6048. (f) Ikawa, T.; Barder, T. E.; Biscoe, M. R.; Buchwald,
S. L. J. Am. Chem. Soc. 2007, 129, 13001–13007. (g) Shen, Q.; Shekhar,
S.; Stambuli, J. P.; Hartwig, J. F. Angew. Chem., Int. Ed. 2005, 44, 1371–
1375. (h) Ghosh, A.; Sieser, J. E.; Riou, M.; Cai, W.; Rivera-Ruiz, L.
Org. Lett. 2003, 5, 2207–2210. (i) Suresh, R. R.; Kumara Swamy, K. C.
Tetrahedron Lett. 2009, 50, 6004–6007.
(11) (a) Nodwell, M.; Pereira, A.; Riffell, J. L.; Zimmerman, C.;
Patrick, B. O.; Roberge, M.; Anderson, R. J. J. Org. Chem. 2009, 74,
995–1006. (b) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008,
47, 6338–6361.
(12) (a) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101–1104. (b)
Wolfe, J. P.; Rennels, R. A.; Buchwald, S. L. Tetrahedron 1996, 21,
7525–7546. (c) Yang, B. H.; Buchwald, S. L. Org. Lett. 1999, 1, 35–37.
(d) Klapars, A.; Campos, K. R.; Chen, C.-Y.; Volante, R. P. Org. Lett.
2005, 7, 1185–1188.
(13) (a) Meth-Cohn, O.; Tarnowski, B. Adv. Heterocycl. Chem. 1982,
31, 207–236. (b) Meth-Cohn, O.; Taylor, D. L. Tetrahedron Lett. 1993,
34, 3629–3632. (c) Majo, V. J.; Perumal, P. T. J. Org. Chem. 1996, 61,
6523–6525. (d) Megati, S.; Rao, K. G. S. Tetrahedron Lett. 1995, 36,
5819–5822.
(14) Majo, V. J.; Perumal, P. T. J. Org. Chem. 1998, 63, 7136–7142.
(15) Pan, W.; Dong, D.; Wang, K.; Zhang, J.; Wu, R.; Xiang, D.; Liu,
Q. Org. Lett. 2007, 9, 2421–2423.
Pd2(dba)3
PdCl2
t-BuOH
t-BuOH
t-BuOH
Pd(OAc)2
PdCl2
a Conditions: 1-(2-chloro-1-(phenylsulfonyl)-1H-indol-3-yl)ethanone
(1.0 mmol), benzamide (1.2 mmol), Pd (1 mol %), BINAP (0.25 mol %),
base (3.0 mmol), solvent (2.0 mL/mmol), 110 °C, 6-24 h. b Isolated yields.
3-Acetyl-2-chloroindoles (1b) can be easily prepared from
the Vilsmeier-Haack reaction of 2-oxindole followed by
protection.19 We initiated probing the conditions under
which the coupling reaction of 1-(2-chloro-1-(phenylsul-
fonyl)-1H-indol-3-yl)ethanone and benzamide proceeded
efficiently. We screened different catalysts and ligands as
depicted in Tables 1 and 2, respectively. We found that the
Pd2(dba)3/BINAP catalyst system is efficient for the cross-
coupling of a variety of primary amides with 3-acetyl-2-
chloroindoles. Significantly better results were obtained by
using this catalyst system as shown in Table 3. For example,
the reaction of 1-(2-chloro-1-(phenylsulfonyl)-1H-indol-3-
yl)ethanone with benzamide using 0.5 mol % of Pd2(dba)3
and 0.25 mol % of (()-BINAP afforded the desired product
(3a) with 95% yield in 6 h as shown in Table 3. The structure
of 3h is also confirmed by the single crystal X-ray crystal
structure as shown in Figure 2.20 Most of the reactions
(16) Marson, C. M. Tetrahedron 1992, 48, 3659–3726.
(17) Liger, F.; Popowycz, F.; Besson, T.; Picot, L.; Galmarini, C. M.;
Joseph, B. Bioorg. Med. Chem. 2007, 15, 5615–5619.
(18) (a) Okuda, S.; Robinson, M. M. J. Am. Chem. Soc. 1959, 81,
740–743. (b) Portela-Cubillo, F.; Surgenor, B. A.; Aitken, R. A.; Wal-
ton, J. C. J. Org. Chem. 2008, 73, 8124–8127. (c) Bonini, C.; Funicello,
M.; Spagnolob, P. Synlett 2006, 1574–1576.
(19) Lu, S. C.; Duan, X. Y.; Shi, Z. J.; Li, B.; Ren, Y. W.; Zhang, W.
Org. Lett. 2009, 11, 3902–3905.
(20) (a) The CCDC deposition number of 3h is 806183; molecular
formula, C14H16N2O2; chemical formula weight is 244.28; triclinic; unit
˚
˚
˚
cell parameters: a 7.1902(14) A, b 10.650(2) A, c 10.795(2) A, R
104.16(3)°, β 103.50(3)°, γ 96.70(3)°, and space group P212121. (b)
The CCDC deposition number of 4a is 806182; molecular formula:
C17H17Cl1N2O1; chemical formula weight is 300.78; triclinic; unit cell
˚
˚
˚
parameters: a 7.1902(14) A, b 10.650(2) A, c 10.795(2) A, R 104.16(3)°, β
103.50(3)°, γ 96.70(3)°, and space group P1.
Org. Lett., Vol. 13, No. 6, 2011
1399