L. Bosch et al. / Tetrahedron Letters 52 (2011) 753–756
755
Table 2
Acknowledgements
From amino esters 2a–j to quinazolinones 5a–f, pyridopyrimidinones 5g and 5h and
thienopyrimidinones 5i and 5ja
This study was started with funds from the FP6 of the European
Union Commission, within the TRIoH project (LSHB-CT-2003-
503480, 2004–2007), which included a studentship to L.B. during
this period and from a Spanish Government grant SAF2005-
24643-E (2006 and 2007). During 2008 and part of 2009, L.B.
enjoyed a fellowship from the Fundació Bosch Gimpera. X.J.N. is
a fellow of East China Normal University (ECNU, Shangai). Related
preliminary experiments on the formation of N-oxides by I. Cialicu
and M. Rosa, as DEA students (Universitat de Barcelona), are also
acknowledged.
O
N
O
N
(MeO)3CCOOMe
(2.5 equiv)
OPMB
COY
OH
N
N
2a—j
TsOH (10 mol%)
CH3CN, 80 ºC, 0.5 h
CONH-4-FBn
3a—j, Y = OMe
5a—j
4-FC6H4CH2NH2 (1.2 equiv)
CH3CN, 80 ºC, 6 h
TFA—CH2Cl2 (1:4)
PhOMe, rt, 0.5 h
4a—j, Y = NH-4-FBn
a—c, e, f = benzo seriesa g, h = pyrido series
d = naphtho series
i, j = thieno series
Entry Step 1
Yield (%) Step 2
Yieldb (%) Step 3
Yield (%)
1
2
3
4
5
6
7
8
9
10
2a to 3a
2b to 3b
2c to 3c
95–98
98
92
3a to 4a
3b to 4b 86
3c to 4c 87
3d to 4d 85
91
4a to 5a
4b to 5b
4c to 5c
95
92
90
References and notes
1. Raltegravir is commercialised as its potassium salt due to its better
pharmacokinetic profile. See: (a) Summa, V.; Petrocchi, A.; Bonelli, F.;
Crescenzi, B.; Donghi, M.; Ferrara, M.; Fiore, F.; Gardelli, C.; Gonzalez Paz, O.;
Hazuda, D. J.; Jones, P.; Kinzel, O.; Laufer, R.; Monteagudo, E.; Muraglia, E.; Nizi,
E.; Orvieto, F.; Pace, P.; Pescatore, G.; Scarpelli, R.; Stillmock, K.; Witmer, M. V.;
Rowley, M. J. Med. Chem. 2008, 51, 5843–5855 (discovery of raltegravir); (b)
Nizi, E.; Orsale, M. V.; Crescenzi, B.; Pescatore, G.; Muraglia, E.; Alfieri, A.;
Gardelli, C.; Spieser, S. A. H.; Summa, V. Bioorg. Med. Chem. Lett. 2009, 19, 4617–
4621. and references cited therein; (c) Ferrara, M.; Fiore, F.; Summa, V.;
Gardelli, C. Bioorg. Med. Chem. Lett. 2010, 20, 5031–5034; for very recent,
representative reviews, see: (d) Vandekerckhove, L. P. R.; Christ, F.; Debyser, Z.;
Owen, A.; Back, D.; Voet, A.; Schapiro, J.; Vogelaers, D. Antiviral Res. 2009, 71–
79; (e) Metifiot, M.; Marchand, C.; Maddali, K.; Pommier, Y. Viruses 2010, 2,
1336–1347.
2. In connection with total syntheses of natural products: (a) Olivella, A.;
Rodríguez-Escrich, C.; Urpí, F.; Vilarrasa, J. J. Org. Chem. 2008, 73, 1578–1581.
and references therein; For a review, see: (b) Codd, R. Coord. Chem. Rev. 2008,
252, 1387–1408.
3. For N-oxidations with mCPBA, see: (a) Nowak, I.; Cannon, J.; Robins, M. Org.
Lett. 2006, 8, 4565–4568; (b) Saladino, R.; Carlucci, P.; Danti, M.; Crestini, C.;
Mincione, E. Tetrahedron 2000, 56, 10031–10037; with other oxidizing agents:
(c) Rong, D.; Philips, V.; Rubio, R.; Castro, M.; Wheelhouse, R. Tetrahedron Lett.
2008, 49, 6933–6935; (d) Zhu, X.; Kreutter, K.; Hu, H.; Player, M.; Gaul, M.
Tetrahedron Lett. 2008, 49, 832–834.
2d to 3d 85
4d to 5d 90
2e to 3e
2f to 3f
2g to 3g
89
3e to 4e
3f to 4f
3f to 4g
89
93
85
4e to 5e
4f to 5fc
4g to 5g
4h to 5h 92
4i to 5i
4j to 5j
95
97
87
91
90d
2h to 3h 85e
3h to 4h 85
2i to 3i
2j to 3j
92f
90f
3i to 4i
3j to 4j
70g
75g
90
92
a
b
c
See Scheme 2 for the substituents (groups/rings).
Similar results in refluxing THF.
The CONHOPMB group at position 4 of the aromatic ring was also cleaved to
CONHOH.
d
120 mol % of TsOHÁH2O was required in this case, owing to the basicity of the 2-
aminopyridine moiety. Refluxing AcOH was not sufficient whereas heating at
140 °C (MW) gave rise to degradation. On the other hand, heating overnight with
10 mol % of BF3, at 80 °C in a closed vial caused an almost complete disappearance
of 2g (to give in 80% isolated yield the desired 3g).
e
This cyclisation was performed in refluxing AcOH.
For 2 h in refluxing CH3CN.
With 220 mol % of 4-FBnNH2 and dropwise addition of 200 mol % of LDA, in THF
f
g
at À78 °C, stirring for 4 h. Heating with 4-FBnNH2 (as in entries 1–8) gave rise to
decarboxylation.
4. For deamination studies, see: (a) Charafeddine, A.; Chapuis, H.; Strazewski, P.
Org. Lett. 2007, 9, 2787–2790; (b) Porcari, A.; Ptak, R.; Borysko, K.; Breitenbach,
J.; Drach, J.; Townsend, L. Nucleosides, Nucleotides Nucleic Acids 2003, 22, 2171–
2193. and references cited therein.
OMe
OMe 3.73
163.3
3.83
55.3
5. We prepared them as follows: conversion of protected guanosines to 2-amino-
6-chloropurine derivatives, diazotization to yield 6-chloro-2-iodo analogues,
replacement of iodide with cyanide (with CuCN, in the presence of Pd(0)/
Xantphos), and amino-dechlorination. We introduced the amino group on C6
with NH3/1,4-dioxane (without concomitant deacetylation of tri-O-
acetyladenosines). See: (a) Grunewald, C.; Kwon, T.; Piton, N.; Forster, U.;
Wachtveitl, J.; Engels, J. W. Bioorg. Med. Chem. 2008, 16, 19–26; (b) Ohno, M.;
Gao, Z.-G.; Van Rompaey, P.; Tchilibon, S.; Kim, S.-K.; Harris, B. A.; Gross, A. S.;
Duong, H. T.; Van Calenbergh, S.; Jacobson, K. A. Bioorg. Med. Chem. 2004, 12,
2995–3007; (c) Sakamoto, T.; Ohsawa, K. J. Chem. Soc., Perkin Trans. 1 1999,
2323–2326 (this method, reported for aromatic rings, was the most efficient in
our hands).
6. (a) Nouira, I.; Kostakis, I. K.; Dubouilh, C.; Chosson, E.; Iannelli, M.; Besson, T.
Tetrahedron Lett. 2008, 49, 7033–7036; (b) Kalusa, A.; Chessum, N.; Jones, K.
Tetrahedron Lett. 2008, 49, 5840–5842. and references cited therein; (c)
Brunton, S. A.; Stibbard, J. H. A.; Rubin, L. L.; Kruse, L. I.; Guicherit, O. M.;
Boyd, E. A.; Price, S. J. Med. Chem. 2008, 51, 1108–1110; (d) Vostrov, E. S.;
Novikov, A. A.; Maslivets, A. N.; Aliev, Z. G. Russ. J. Org. Chem. 2007, 43, 224–227.
7. For the condensation of 2-aminobenzamides with diethyl oxalate or
MeOCOCOCl, see: (a) Zhou, H.-B.; Liu, G.-S.; Yao, Z.-J. J. Org. Chem. 2007, 72,
6270–6272; (b) Mason, J. J.; Bergman, J. Org. Biomol. Chem. 2007, 5, 2486–2490;
(c) Shemchuk, L. A.; Chernykh, V. P.; Arzumanov, P. S.; Starchikova, I. L. Russ. J.
Org. Chem. 2007, 43, 1830–1835. and references therein; (d) Chavan, S. P.;
Sivappa, R. Tetrahedron Lett. 2004, 45, 997–999.
55.0
O
5.38
79.9
153.0
160.2
159.0
O
O
N
N
H
4.74
76.7
7.19
O
N
(MeO)3CCOOMe
143.5
N
7.79
NH210.56
146.4
140.9
N
160.6
TsOH (cat.)
CH3CN
80 ºC, 1 h
N
5.05
44.8
5.90
N
3.98
COOMe 53.7
5.30
46.9
2k
3k
DMSO-d6
162.7
CDCl3
F
161.5
95%
F
(J = 244 Hz)
F
H2N 3.84
161.7
CH3CN, 80 ºC, 6 h
90%
45.7
OMe
3.87
153.4 O
N
5.24
80.4
55.6
153.8
160.2
O
12.05
TFA–CH2Cl2
OH
N160.2
O
N
N
N
8.28
141.7
1:4
8.06
149.1
161.O0
HN
F
149.8
F
141.1
O
N
N
PhOMe
rt, 0.5 h
N
161.6
5.36
45.7
5.11
47.4
HN
162.1
9.36
4.46
41.3
8.07
4.63
43.2
92%
F
F
5k
4k
162.8
161.2
DMSO-d6
CDCl3
Scheme 3. From 2k to 5k. Chemical shifts (dH in regular type, dC in italics).
8. (a) Heravi, M. M.; Sadjadi, S.; Haj, N. M.; Oskooie, H. A.; Shoar, R. H.;
Bamoharram, F. F. Tetrahedron Lett. 2009, 50, 943–945; (b) Dabiri, M.; Salehi, P.;
Mohammadi, A. A.; Baghbanzadeh, M. Synth. Commun. 2005, 35, 279–283. and
references cited therein.
9. Prepared according to: (a) Barrett, A. G. M.; Carr, R. A. E.; Attwood, S. V.;
Richardson, G.; Walshe, N. D. A. J. Org. Chem. 1986, 51, 4840–4856; we have
found (SciFinder search) a study dealing with a related cyclisation, with 2-
aminobenzamide and (EtO)3CCOOEt, in 24% yield: (b) Musser, J. H.; Hudec, T.
T.; Bailey, K. Synth. Commun. 1984, 14, 947–953. this outcome may have
discouraged the use of such orthoesters; cf. (c) Aliabiev, S. B.; Bykova, R. V.;
Kravchenko, D. V.; Ivachtchenko, A. V. Lett. Org. Chem. 2007, 4, 273–280
(isoxazole derivatives and (EtO)3CCOOEt at 120 °C); (d) Boyle, K. E.; MacMillan,
K. S.; Ellis, D. A.; Lajiness, D. A.; Robertson, W. M.; Boger, D. L. Bioorg. Med. Chem.
Assignments confirmed by 2D NMR (HSQC).
excellent yields of the cyclic compounds under very mild condi-
tions. Overall, the protocol reported herein for the first time for
the synthesis of N-hydroxypyrimidinones 5a–k (four-steps, most
of them in 85–98% yields, up to 76% overall yield) appears to be
of wide scope. In short, in the unsuccessful search for new antiviral
drugs we have developed the best procedure to date for reaching
hitherto unknown pyrimidinone-2-carboxylic acid derivatives,
which may enjoy other applications.16