Journal of Medicinal Chemistry
ARTICLE
come to room temperature (30-45 min). Each well was supplemented
with 100 μL of HBSS containing appropriate agonists to measure seven
concentrations for three agonists in quadruplicate. Additional wells
(eight) were used for HBSS controls (0 mM agonists). Concentrations
were from 10 μM to 10 nM in 1/2 log steps. Relative impedance in each
well was monitored every 15 s over 2 h. For evaluation purposes, relative
impedance at any given time is expressed as a “cell index.” Cell index is
defined as (Zi - Zo)/(15 Ω), where Zi is impedance at a given time
point during the experiment and Zo is impedance before the addition of
the agonist. Average cell index for each agonist/dose (n = 4) was graphed
over time. Physiological EC50 values were calculated from the area under
the curve values.
thioanisole; THF, tetrahydrofuran; TIS, triisopropylsilane; trifluor-
oacetic acid; TFA, trifluoroacetic acid
’ ADDITIONAL NOTE
Abbreviations used for amino acids and designation of peptides
follow the rules of the IUPAC-IUB Commission of Biochemical
Nomenclature in J. Biol. Chem. 1972, 247, 977−983.
’ REFERENCES
(1) (a) Ossovskaya, V. S.; Bunnett, N. W. Protease-activated recep-
tors: contribution to physiology and disease. Physiol. Rev. 2004, 84 (2),
579–621. (b) Ramachandran, R.; Hollenberg, M. D. Proteinases and
signalling: pathophysiological and therapeutic implications via PARs and
more. Br. J. Pharmacol. 2008, 153 (Suppl. 1), S263–S282.
’ ASSOCIATED CONTENT
S
(2) (a) Rattenholl, A.; Steinhoff, M. Proteinase-activated receptor-2
in the skin: receptor expression, activation and function during health
and disease. Drug News Perspect. 2008, 21 (7), 369–381. (b) Soreide, K.
Proteinase-activated receptor 2 (PAR-2) in gastrointestinal and pan-
creatic pathophysiology, inflammation and neoplasia. Scand. J. Gastro-
enterol. 2008, 43 (8), 902–909. (c) Bueno, L. Protease activated receptor
2: a new target for IBS treatment. Eur. Rev. Med. Pharmacol. Sci. 2008, 12
(Suppl. 1), 95–102. (d) Mackie, E. J.; Loh, L. H.; Sivagurunathan, S.;
Uaesoontrachoon, K.; Yoo, H. J.; Wong, D.; Georgy, S. R.; Pagel, C. N.
Protease-activated receptors in the musculoskeletal system. Int. J.
Biochem. Cell Biol. 2008, 40 (6-7), 1169–1184. (e) Russo, A.; Soh,
U. J.; Trejo, J. Proteases display biased agonism at protease-activated
receptors: location matters!. Mol. Intervensions 2009, 9 (2), 87–96.
(3) Vergnolle, N. Protease-activated receptors as drug targets in
inflammation and pain. Pharmacol. Ther. 2009, 123 (3), 292–309.
(4) Soh, U. J.; Dores, M. R.; Chen, B.; Trejo, J. Signal transduction by
protease-activated receptors. Br. J. Pharmacol. 2010, 160 (2), 191–203.
(5) Blackhart, B. D.; Emilsson, K.; Nguyen, D.; Teng, W.; Martelli,
A. J.; Nystedt, S.; Sundelin, J.; Scarborough, R. M. Ligand cross-reactivity
within the protease-activated receptor family. J. Biol. Chem. 1996, 271
(28), 16466–16471.
Supporting Information. Solid phase synthesis, purifica-
b
tion and characterization procedures, spectral and HPLC data,
Ca2þ mobilization, and in vitro physiological assays. This mate-
’ AUTHOR INFORMATION
Corresponding Author
*Phone: (520) 626-4179. Fax: (520) 626-4824. E-mail: vagner@
email.arizona.edu.
’ ACKNOWLEDGMENT
The authors thank the Department of Chemistry, University
of Arizona, and more specifically Arpad Somogy for mass spec-
trometry results. The authors also thank Renata Patek and
Zhenyu Zhang for technical assistance, Daniel X. Sherwood for
his program that allowed for quick quantification of Ca2þ data,
and Cara L. Sherwood for her help in the laboratory in getting
this work going. This work is part of a multiprincipal investigator
collaboration between J.V., T.J.P., and S.B. This work was sup-
ported in part by the following grants: NIEHS Superfund
Research Grant ES 04940 (S.B.), SRC Project 425.024 (S.B.),
NIH Grant R01NS065926 (T.J.P.), Technology and Research
Initiative Fund from Arizona State Proposition 301 (J.V.), and
NIH Training Grant T32-HL007249 (A.N.F.). S.M.S. is a UA
UBRP scholar (Grant HHMI 52005889).
(6) McGuire, J. J.; Saifeddine, M.; Triggle, C. R.; Sun, K.; Hollenberg,
M. D. 2-Furoyl-LIGRLO-amide: a potent and selective proteinase-
activated receptor 2 agonist. J. Pharmacol. Exp. Ther. 2004, 309 (3),
1124–1131.
(7) Hollenberg, M. D.; Renaux, B.; Hyun, E.; Houle, S.; Vergnolle,
N.; Saifeddine, M.; Ramachandran, R. Derivatized 2-furoyl-LIGRLO-
amide, a versatile and selective probe for proteinase-activated receptor 2:
binding and visualization. J. Pharmacol. Exp. Ther. 2008, 326 (2), 453–462.
(8) (a) Barry, G. D.; Le, G. T.; Fairlie, D. P. Agonists and antagonists
of protease activated receptors (PARs). Curr. Med. Chem. 2006, 13 (3),
243–265. (b) Barry, G. D.; Suen, J. Y.; Low, H. B.; Pfeiffer, B.; Flanagan,
B.; Halili, M.; Le, G. T.; Fairlie, D. P. A refined agonist pharmacophore
for protease activated receptor 2. Bioorg. Med. Chem. Lett. 2007, 17 (20),
5552–5557.
(9) (a) Kawabata, A.; Saifeddine, M.; Al-Ani, B.; Leblond, L.;
Hollenberg, M. D. Evaluation of proteinase-activated receptor-1
(PAR1) agonists and antagonists using a cultured cell receptor desensi-
tization assay: activation of PAR2 by PAR1-targeted ligands. J. Pharma-
col. Exp. Ther. 1999, 288 (1), 358–370. (b) Ramachandran, R.; Mihara,
K.; Mathur, M.; Rochdi, M. D.; Bouvier, M.; Defea, K.; Hollenberg,
M. D. Agonist-biased signaling via proteinase activated receptor-2:
differential activation of calcium and mitogen-activated protein kinase
pathways. Mol. Pharmacol. 2009, 76 (4), 791–801. (c) Gardell, L. R.; Ma,
J. N.; Seitzberg, J. G.; Knapp, A. E.; Schiffer, H. H.; Tabatabaei, A.; Davis,
C. N.; Owens, M.; Clemons, B.; Wong, K. K.; Lund, B.; Nash, N. R.; Gao,
Y.; Lameh, J.; Schmelzer, K.; Olsson, R.; Burstein, E. S. Identification and
characterization of novel small-molecule protease-activated receptor 2
agonists. J. Pharmacol. Exp. Ther. 2008, 327 (3), 799–808.
’ ABBREVIATIONS USED
Aloc, allyloxycarbonyl; Boc, tert-butyloxycarbonyl; BB, bromo-
phenol blue; CH3CN, acetonitrile; DCM, dichloromethane; DI,
deionized; DIPEA, diisopropylethylamine; DMF, N,N-dimethyl-
formamide; DIC, diisopropylcarbodiimide; DMEM, Dulbecco’s
modified Eagle medium; Fmoc, fluorenylmethoxycarbonyl; FT-
ICR, Fourier Transform ion cyclotron resonance; ESI-MS, elec-
trospray ionization mass spectrometry; EDT, 1,2-ethanedithiol;
Et2O, diethyl ether; HBSS, Hank’s balanced saline solution
buffered with 25 mM Hepes; HCTU, O-[1H-(6-chlorobenzo-
triazol-1-yl)(dimethylamino)ethylene]uranium hexafluorophos
phate N-oxide; HEPES, 4-(2-hydroxyethyl)-1-piperazineethane-
sulfonic acid; HOBt, N-hydroxybenzotriazole; HOCt, 6-chloro-
1-hydroxybenzotriazole; GPCR, G-protein-coupled receptor;
MALDI-TOF, matrix assisted laser desorption ionization time
of flight; PAR2, protease-activated receptor type 2; Pbf, 2,2,4,6,7-
pentamethyldihydrobenzofuran-5-sulfonyl; SPPS, solid-phase pep-
tide synthesis; RP-HPLC, reverse-phase high performance liquid
chromatography; RCTA, xCELLigence real-time cell analyzer; TA,
(10) Williams, D. P.; Antoine, D. J.; Butler, P. J.; Jones, R.; Randle,
L.; Payne, A.; Howard, M.; Gardner, I.; Blagg, J.; Park, B. K. The
metabolism and toxicity of furosemide in the Wistar rat and CD-1
1312
dx.doi.org/10.1021/jm1013049 |J. Med. Chem. 2011, 54, 1308–1313