To further expand amino acid based asymmetric cata-
lysis, we were interested in establishing novel chiral phos-
phines based on simple amino acid scaffolds. Bifunctional
catalytic systems have been widely used in organic chem-
istry, and the synergistic interactions of two functionalities
have been proven to be extremely powerful in asymmetric
catalysis. We envisioned that novel bifunctional phosphine
catalysts can be easily derived from natural amino acids,
and the designing principles are summarized in Figure 1.
based on chiral amine catalysts. Hatakeyama et al.
reported highly enantioselective MBH and aza-MBH re-
actions with hexafluoroisopropyl acrylate (HFIPA) cata-
lyzed by a tertiary amine catalyst β-isocupreidine
(β-ICD).6 Shi and co-workers employed the same catalyst
in the aza-MBH reactions with diverse activated olefins.7
Later, the group of Sasai applied BINOL-derived amine to
promote the aza-MBH reaction.8 Raheem and Jacobsen
also reported a thiourea-mediated aza-MBH reaction.9
More recently, Zhu et al. disclosed that a modified
β-ICD bearing amide functionality (β-ICD amide) could
be applied in the aza-MBH reaction in the presence of
β-naphthnol and excellent enantioselectivity was achieved
with both aromatic and aliphatic sulfinyl imines.10 On the
other hand, chiral phosphine-mediated enantioselective
aza-MBH reactions are rather limited. In this context,
elegant utilization of BINOL-derived phosphines by the
groups of Shi, Sasai, and Ito clearly demonstrated the
enormous potential of chiral phosphines in asymmetric
MBH reactions.11 Our research group recently showed
that dipeptide-derived novel phosphines were powerful
catalysts for the enantioselective allene-acrylate [3 þ 2]
cycloadditions;2p herein, we demonstrate that amino acid
based bifunctional phosphines could effectively catalyze
aza-MBH of acrylates12 with excellent enantiomeric control.
We began our investigation by preparing a number of
L-valine-derived bifunctional chiral phosphines with dif-
ferent hydrogen bond donors (catalysts 4 to 7 in Figure 2).
In particular, thioureas13 and sulfonamides14 are known to
be remarkably useful in hydrogen-bonding (H-bond) in-
teractions. The aza-MBH reaction between imines and
acrylates was chosen as a model reaction, and the results
Figure 1. Novel bifunctional phosphine catalysts based on
natural primary amino acids.
Simple functional group transformations convert the acid
group into a phosphine, and the Brønsted acid site neces-
sary for the bifunctional catalysts can be easily derived
from the amine moiety. Proper selection of side chains then
provides either steric or electronic tuning to the structures
of the catalysts. Moreover, by connecting the phosphorus
atom to a primary carbon, we anticipate higher nucleo-
philicity of the resulting chiral phosphines.
The Morita-Baylis-Hillman (MBH) reaction and its
aza counterpart (Aza-MBH reaction) are among the most
valuable reactions for the construction of densely functio-
nalized products from simple precursors in a highly atom
economic fashion.5 Considerable efforts have been de-
voted to the development of enantioselective versions of
these reactions, and most successful examples are usually
(6) (a) Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S.
J. Am. Chem. Soc. 1999, 121, 10219. (b) Kawahara, S.; Nakano, A.;
Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2003, 5, 3103.
(7) (a) Shi, M.; Xu, Y.-M. Angew. Chem., Int. Ed. 2005, 41, 4507. (b)
Shi, M.; Xu, Y.-M.; Shi, Y.-L. Chem.;Eur. J. 2005, 11, 1794. (c) Shi, M.;
Qi, M.-J.; Liu, X.-G. Chem. Commun. 2008, 6025.
(8) (a) Matsui, K.; Takizawa, S.; Sasai, H. J. Am. Chem. Soc. 2005,
127, 3680. (b) Matsui, K.; Tanaka, K.; Horii, A.; Takizawa, S.; Sasai, H.
Tetrahedron: Asymmetry 2006, 17, 578.
(9) Raheem, I. T.; Jacobsen, E. N. Adv. Synth. Catal. 2005, 347, 1701.
(10) (a) Abermil, N.; Masson, G.; Zhu, J. J. Am. Chem. Soc. 2008,
130, 12596. (b) Abermil, N.; Masson, G.; Zhu, J. Org. Lett. 2009, 11,
4648.
(11) (a) Shi, M.; Chen, L.-H. Chem. Commun. 2003, 1310. (b) Shi, M.;
Chen, L.-H.; Teng, W.-D. Adv. Synth. Catal. 2005, 347, 1781. (c) Shi, M.;
Chen, L.-H.; Li, C.-Q. J. Am. Chem. Soc. 2005, 127, 3790. (d) Liu, Y.-H.;
Chen, L.-H.; Shi, M. Adv. Synth. Catal. 2006, 348, 973. (e) Matsui, K.;
Takizawa, S.; Sasai, H. Synlett 2006, 761. (f) Ito, K.; Nishida, K.;
Gotanda, T. Tetrahedron Lett. 2007, 48, 6147.
(12) For a recent excellent example of aza-MBH reactions with metal
catalysis, see: Yukawa, T.; Seelig, B.; Xu, Y.; Morimoto, H.; Matsunaga,
S.; Berkessel, A.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 11988.
(13) (a) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289. (b) Taylor,
M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520. (c) Doyle,
A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713. (d) Yu, X.; Wang, W.
Chem.;Asian J. 2008, 3, 516. (e) Connon, S. J. Chem. Commun. 2008,
2499.
(14) (a) Luo, J.; Xu, L.-W.; Hay, R. A. S.; Lu, Y. Org. Lett. 2009, 11,
437. (b) Wang, W.; Wang, J.; Li, H.; Liao, L. Tetrahedron Lett. 2004, 45,
7235. (c) Wang, W.; Wang, J.; Li, H. Tetrahedron Lett. 2004, 45, 7243.
(d) Wang, W.; Wang, J.; Li, H. Org. Lett. 2004, 6, 2817. (e) Wang, W.;
Wang, J.; Li, H. Angew. Chem. 2005, 117, 1393. Angew. Chem., Int. Ed.
2005, 44, 1369. (f) Wang, J.; Li, H.; Lou, B.; Zu, L.; Guo, H.; Wang, W.
Chem.;Eur. J. 2006, 12, 4321. (g) Berkessel, A.; Koch, B.; Lex, J. Adv.
Synth. Catal. 2004, 346, 1141. (h) Dahlin, N.; Bøgevig, A.; Adolfsson, H.
Adv. Synth. Catal. 2004, 346, 1101.
(3) For our work in this research field, see: (a) Jiang, Z.; Liang, Z.;
Wu, X.; Lu, Y. Chem. Commun. 2006, 2801. (b) Cheng, L.; Han, X.;
Huang, H.; Wong, M. W.; Lu, Y. Chem. Commun. 2007, 4143. (c) Cheng,
L.; Wu, X.; Lu, Y. Org. Biomol. Chem. 2007, 5, 1018. (d) Wu, X.; Jiang,
Z.; Shen, H.-M.; Lu, Y. Adv. Synth. Catal. 2007, 349, 812. (e) Zhu, Q.;
Lu, Y. Chem. Commun. 2008, 6315. (f) Han, X.; Kwiatkowski, J.; Xue,
F.; Huang, K.-W.; Lu, Y. Angew. Chem., Int. Ed. 2009, 48, 7604. (g) Zhu,
Q.; Lu, Y. Chem. Commun. 2010, 2235. (h) Jiang, Z.; Yang, H.; Han, X.;
Luo, J.; Wong, M. W.; Lu, Y. Org. Biomol. Chem. 2010, 8, 1368. (i)
Jiang, Z.; Lu, Y. Tetrahedron Lett. 2010, 51, 1884. (j) Zhu, Q.; Lu, Y.
Angew. Chem., Int. Ed. 2010, 49, 7753. (k) Luo, J.; Wang, H.; Han, X.;
Xu, L.-W.; Kwiatkowski, J.; Huang, K.-W.; Lu, Y. Angew. Chem., Int.
Ed. 2011, 50, 1861.
(4) For reviews on primary amino acids and primary amines in
asymmetric catalysis, see: (a) Xu, L.-W.; Luo, J.; Lu, Y. Chem. Commun.
2009, 1807. (b) Xu, L.-W.; Lu, Y. Org. Biomol. Chem. 2008, 6, 2047. (c)
Peng, F.; Shao, Z. J. Mol. Catal. A 2008, 285, 1. (d) Chen, Y.-C. Synlett
2008, 1919. (e) Bartoli, G.; Melchiorre, P. Synlett 2008, 1759. For
reviews on asymmetric catalysis mediated by synthetic peptides, see:
(f) Davie, E. A. C.; Mennen, S. M.; Xu, Y.; Miller, S. J. Chem. Rev. 2007,
107, 5759. (g) Revell, J. D.; Wennemers, H. Curr. Opin. Chem. Biol. 2007,
11, 269.
(5) For reviews on the MBH reactions, see: (a) Basavaiah, D.;
Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447. (b) Langer, P.
Angew. Chem., Int. Ed. 2000, 39, 3049. (c) Basavaiah, D.; Rao, A. J.;
Satyanarayana, T. Chem. Rev. 2003, 103, 811. (d) Masson, G.;
Housseman, C.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 4614. (e)
Basavaiah, D.; Rao, K. V.; Reddy, R. J. Chem. Soc. Rev. 2007, 36,
1581. (f) Shi, Y.-L.; Shi, M. Eur. J. Org. Chem. 2007, 2905. (g) Ma,
G.-N.; Jiang, J.-J.; Shi, M.; Wei, Y. Chem. Commun. 2009, 5496. (h)
Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1. (i) Wei,
Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005.
Org. Lett., Vol. 13, No. 6, 2011
1311