10.1002/chem.202001950
Chemistry - A European Journal
FULL PAPER
[13]
P. Tao, J. Liang, Y. Jia, Eur. J. Org. Chem. 2014, 5735–5748.
[35]
[36]
K. Barral, A. D. Moorhouse, J. E. Moses, Org. Lett. 2007, 9, 1809–
1811.
[14]
A. K. Pitts, F. O’Hara, R. H. Snell, M. J. Gaunt, Angew. Chem. Int.
Ed. 2015, 54, 5451–5455.
a) B. P. Fors, D. A. Watson, M. R. Biscoe, S. L. Buchwald, J. Am.
Chem. Soc. 2008, 130, 13552–13554; b) W. Wang, G. B.
Hammond, B. Xu, J. Am. Chem. Soc. 2012, 134, 5697–5705; for
ligand optimization for this annulation reaction, see: ref. 24.
a) P. Harrisson, J. Morris, T. B. Marder, P. G. Steel, Org. Lett. 2009,
11, 3586–3589; b) C. Maeda, T. Todaka, T. Ema, Org. Lett. 2015,
17, 3090–3093.
[15]
[16]
[17]
A. D. Yamaguchi, K. M. Chepiga, J. Yamaguchi, K. Itami, H. M. L.
Davies, J. Am. Chem. Soc. 2015, 137, 644–647.
S. Banne, D. Prabhakar Reddy, W. Li, C. Wang, J. Guo, Y. He, Org.
Lett. 2017, 19, 4996–4999.
[37]
[38]
For reviews, see: a) Y. Wang, M. E. Muratore, A. M. Echavarren,
Chem.–Eur. J. 2015, 21, 7332–7339; b) R. J. Harris, R. A.
Widenhoefer, Chem. Soc. Rev. 2016, 45, 4533–4551.
For important reports on structure and reactivity of gold carbenoid,
see: a) G. Seidel, A. Fürstner, Angew. Chem. Int. Ed. 2014, 53,
4807–4811; b) R. J. Harris, R. A. Widenhoefer, Angew. Chem. Int.
Ed. 2014, 53, 9369–9371; c) M. W. Hussong, F. Rominger, P.
Krämer, B. F. Straub, Angew. Chem. Int. Ed. 2014, 53, 9372–9375;
d) A. G. Tskhovrebov, J. B. Lingnau, A. Fürstner, Angew. Chem. Int.
Ed. 2019, 58, 8834–8838.
a) A. R. Katritzky, G. W. Rewcastle, L. M. Vazquez de Miguel, J.
Org. Chem. 1988, 53, 794–799; b) C. G. Hartung, A. Fecher, B.
Chapell, V. Snieckus, Org. Lett. 2003, 5, 1899–1902.
G. Chelucci, S. Baldino, A. Ruiu, J. Org. Chem. 2012, 77, 9921–
9925.
[18]
[39]
[40]
H. Wang, Z. Wang, H. Huang, J. Tan, K. Xu, Org. Lett. 2016, 18,
5680–5683.
[41]
[42]
Q. Song, Q. Feng, J. Org. Chem. 2014, 79, 1867–1871.
For synthesis of unprotected analogues 54 and 55, see Supporting
information.
[19]
[20]
a) D. J. Gorin, N. R. Davis, F. D. Toste, J. Am. Chem. Soc. 2005,
127, 11260–11261; b) Y. Tokimizu, S. Oishi, N. Fujii, H. Ohno, Org.
Lett. 2014, 16, 3138–3141.
[43]
CDK2 belongs to the serine/threonine protein kinase family, and
involves in the progression of cells into the S- and M-phases of the
cell cycle. In multiple cancer types, CDK2 activity is crucially
associated with tumor growth, see: M. Peyressatre, C. Prével, M.
Pellerano, M. C. Morris, Cancers 2015, 7, 179–237.
S. Tadesse, E. C. Caldon, W. Tilley, S. Wang, J. Med. Chem. 2019,
62, 4233–4251.
a) C. Nieto-Oberhuber, M. P. Muñoz, E. Buñuel, C. Nevada, D. J.
Cárdenas, A. M. Echavarren, Angew. Chem. Int. Ed. 2004, 43,
2402–2406; b) M. R. Luzung, J. P. Markham, F. D. Toste, J. Am.
Chem. Soc. 2004, 126, 10858–10859; c) N. D. Shapiro, F. D. Toste,
J. Am. Chem. Soc. 2007, 129, 4160–4161.
[44]
[45]
[21]
For reviews on the use of gold catalysis in natural product and
heterocycle syntheses, see: a) Y. Zhang, T. Luo, Z. Yang, Nat.
Prod. Rep. 2014, 31, 489–503; b) A. Fürstner, Acc. Chem. Res.
2014, 47, 925-938; c) P. W. Davies, M. Garzon, Asian J. Org.
Chem. 2015, 4, 694–708; d) C. I. Stathakis, P. L. Gkizis and A. L.
Zografos, Nat. Prod. Rep. 2016, 33, 1093–1117; e) A. Fürstner,
Angew. Chem. Int. Ed. 2018, 57, 4215–4233.
Glycogen synthase kinase 3β (GSK3β) is a multifunctional
serine/threonine kinase that plays a critical role in regulating
glycogen metabolism. GSK3β also functions as a regulator of
various biological processes, including cell cycle progression,
proliferation, apoptosis signaling, and transcription, see: J. Luo,
Cancer Lett. 2009, 273, 194–200.
[22]
[23]
A. Wetzel, F. Gagosz, Angew. Chem. Int. Ed. 2011, 50, 7354–7358.
B. Lu, Y. Luo, L. Liu, L. Ye, Y. Wang, L. Zhang, Angew. Chem. Int.
Ed. 2011, 50, 8358–8362.
[46]
M. Tokunaga, Y. Miyamoto, T. Suzuki, M. Otani, S. Inuki, T. Esaki,
C. Nagao, K. Mizuguchi, H. Ohno, Y. Yoneda, T. Okamoto, M. Oka,
Y. Matsuura, Virology 2020, 541, 41–51.
[24]
[25]
Y. Kawada, S. Ohmura, M. Kobayashi, W. Nojo, M. Kondo, Y.
Matsuda, J. Matsuoka, S. Inuki, S. Oishi, C. Wang, T. Saito, M.
Uchiyama, T. Suzuki, H. Ohno, Chem. Sci. 2018, 9, 8416–8425.
a) A. Fürstner, V. Mamane, J. Org. Chem. 2002, 67, 6264–6267; b)
V. Mamane, P. Hannen, A. Fürstner, Chem.–Eur. J. 2004, 10,
4556–4575.
[26]
[27]
L. Li, Z. Chen, X. Zhang, Y. Jia, Chem. Rev. 2018, 118, 3752–3832.
For our preliminary communication, see: J. Matsuoka, Y. Matsuda,
Y. Kawada, S. Oishi, H. Ohno, Angew. Chem. Int. Ed. 2017, 56,
7444–7448.
[28]
[29]
[30]
The numbering follows the nomenclature of pyrrolo[2,3-
c]carbazoles.
A. Padwa, D. J. Austin, Y. Gareau, J. M. Kassir, S. L. Xu, J. Am.
Chem. Soc. 1993, 115, 2637–2647.
K. S. Sindhu, A. P. Thankachan, P. S. Sajitha, G. Anilkumar, Org.
Biomol. Chem. 2015, 13, 6891–6905.
[31]
[32]
[33]
J. P. Marino, H. N. Nguyen, J. Org. Chem. 2002, 67, 6841–6844.
Y. Quan, Z. Qiu, Z. Xie, J. Am. Chem. Soc. 2014, 136, 7599–7602.
X. Y. Chen, L. Wang, M. Frings, C. Bolm, Org. Lett. 2014, 16, 3796–
3799.
[34]
E. C. Izgu, T. R. Hoye, Tetrahedron Lett. 2012, 53, 4938–4941.
This article is protected by copyright. All rights reserved.