Journal of the American Chemical Society
ARTICLE
(13) Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2005, 127,
1070.
(51) Faller, J. W.; D’Alliessi, D. G. Organometallics 2003, 22, 2749.
(52) Werner, H.; Canepa, G.; Ilg, K.; Wolf, J. Organometallics 2000,
(14) Hesp, K. D.; Stradiotto, M. Org. Lett. 2009, 11, 1449.
(15) Hesp, K. D.; Tobisch, S.; Stradiotto, M. J. Am. Chem. Soc. 2010,
132, 413.
19, 4756.
(53) Love, R. A.; Koetzle, T. F.; Williams, G. J. B.; Andrews, L. C.;
Bau, R. Inorg. Chem. 1975, 14, 2653.
(16) LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am.
Chem. Soc. 2007, 129, 2452.
(17) Kimura, M.; Tanaka, S.; Tamaru, Y. Bull. Chem. Soc. Jpn. 1995,
68, 1689.
(18) Liu, G. S.; Lu, X. Y. Org. Lett. 2001, 3, 3879.
(19) Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.; Qian, H.;
Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066.
(20) Zhang, Z.; Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc.
2007, 129, 14148.
(54) Cheng, P. T.; Nyburg, S. C. Can. J. Chem. 1972, 50, 912.
(55) Rettig, M. F.; Wing, R. M.; Wiger J. Am. Chem. Soc. 1981, 103,
2980.
(56) Malinoski, J. M.; White, P. S.; Brookhart, M. Organometallics
2003, 22, 621.
(57) Tables of Interatomic Distances and Configuration in Molecules
and Ions; Sutton, L. E., Ed.; The Chemical Society: London, 1958.
(58) Christmann, U.; Pantazis, D. A.; Benet-Buchholz, J.; McGrady,
J. E.; Maseras, F.; Vilar, R. n. J. Am. Chem. Soc. 2006, 128, 6376.
(59) For a brief analysis of the strictly κ1 binding of primary and
secondary aminoalkenes to the rhodium catalyst containing an amino-
phosphine derivative of Xantphos, see ref 28. In this case, the primary
amine binds 50-100 times stronger than the secondary aminoalkene,
which adopts both N-bound and alkene-bound forms.
(60) A species of unknown structure was detected in the 31P NMR
spectrum during this displacement of ligand, perhaps corresponding to a
complex with the phosphine bound without an interaction of the
rhodium with the arene.
(21) Kinder, R. E.; Zhang, Z.; Widenhoefer, R. A. Org. Lett. 2008, 10,
3157.
(22) Giner, X.; Najera, C. Org. Lett. 2008, 10, 2919.
(23) Bender, C. F.; Widenhoefer, R. A. Chem. Commun. 2006, 4143.
(24) Zhang, J. L.; Yang, C. G.; He, C. J. Am. Chem. Soc. 2006, 128,
1798.
(25) Liu, X. Y.; Li, C. H.; Che, C. M. Org. Lett. 2006, 8, 2707.
(26) Michael, F. E.; Cochran, B. M. J. Am. Chem. Soc. 2006, 128,
4246.
(27) Liu, Z.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 1570.
(28) Julian, L. D.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 13813.
(29) Shen, X.; Buchwald, S. L. Angew. Chem., Int. Ed. 2010, 49, 564.
(30) For a recent example of a system that adds both primary and
secondary amines, see ref 15.
(61) It is possible that the second amine increases the rate of
dissociation of a portion of the κ2-bound aminoalkene or that it binds
the rhodium product and prevents decomposition of the reactant by the
initial unsaturated rhodium product, but we did not conduct detailed
studies on this effect.
(62) We did not seek to optimize the yield of this process.
(63) Hauger, B. E.; Huffman, J. C.; Caulton, K. G. Organometallics
1996, 15, 1856.
(64) Hartwig, J. F. Organotransition Metal Chemistry; University
Science Books: Sausalito, CA, 2010; Chapter 11: Nucleophilic Attack
on Coordinated Ligands.
(31) Gagnꢀe, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992,
114, 275.
(32) Stubbert, B. D.; Marks, T. J. J. Am. Chem. Soc. 2007, 129, 6149.
(33) Gribkov, D. V.; Hultzsch, K. C. Angew. Chem., Int. Ed. 2004, 43,
5542.
(34) Knight, P. D.; Munslow, I.; O’Shaughnessy, P. N.; Scott, P.
(65) Crabtree, R. H. The Organometallic Chemistry of the Transition
Metals, 4th ed.; Wiley: New York, 2005; Chapter 8, p 560.
(66) For an example of protonolysis of a cationic alkylpalladium
species containing nitrogen in the β position, see ref 38.
(67) Beller, M.; Eichberger, M.; Trauthwein, H. Angew. Chem., Int.
Ed. Engl. 1997, 36, 2225.
(68) McCarthy, T. J.; Nuzzo, R. G.; Whitesides, G. M. J. Am. Chem.
Soc. 1981, 103, 3396.
(69) Cross, R. J. In The Chemistry of the Metal-Carbon Bond;
Hartley, F. R., Patai, S., Eds.; John Wiley: New York, 1985; Vol. 2, p 559.
(70) Hartwig, J. F. Organotransition Metal Chemistry; University
Science Books: Sausalito, CA, 2010; Chapter 10: Elimination Reactions.
Chem. Commun. 2004, 894.
(35) M€uller, C.; Saak, W.; Doye, S. Eur. J. Org. Chem. 2008, 2731.
(36) Leitch, D. C.; Payne, P. R.; Dunbar, C. R.; Schafer, L. L. J. Am.
Chem. Soc. 2009, 131, 18246.
(37) For a recent study providing evidence for alkene insertion
during a hydrohydrazination proess, see: Hoover, J. M.; DiPasquale, A.;
Mayer, J. M.; Michael, F. E. J. Am. Chem. Soc. 2010, 132, 5043.
(38) Cochran, B. M.; Michael, F. E. J. Am. Chem. Soc. 2008, 130,
2786.
(39) Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc.
1992, 114, 1708.
(40) Baranger, A. M.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc.
1993, 115, 2753.
(41) Wood, M. C.; Leitch, D. C.; Yeung, C. S.; Kozak, J. A.; Schafer,
L. L. Angew. Chem., Int. Ed. 2007, 46, 354.
(42) Gott, A. L.; Clarke, A. J.; Clarkson, G. J.; Scott, P. Chem.
Commun. 2008, 1422.
(43) Hartwig, J. F. Organotransition Metal Chemistry; University
Science Books: Sausalito, CA, 2009; Chapter 16: Hydrofunctionaliza-
tion and Oxidative Functionalization of Olefins.
(44) Modern Rhodium-Catalyzed Organic Reactions; Evans, P. A., Ed.;
Wiley-VCH: Weinheim, 2005.
(45) Crabtree, R. H. The Organometallic Chemistry of the Transition
Metals, 4th ed.; Wiley: New York, 2005; Chapter 9, p 560.
(46) Han, X.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2006, 45,
1747.
(47) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem.
Soc. 2004, 126, 4526.
(48) For an example in which the reaction of a rhodium-olefin
complex led to displacement of the alkene, rather than addition, see
ref 49.
(49) Hahn, C.; Sieler, J.; Taube, R. Chem. Ber. 1997, 130, 939.
(50) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998,
120, 9722.
2782
dx.doi.org/10.1021/ja1057949 |J. Am. Chem. Soc. 2011, 133, 2772–2782