interaction with green fluorescence labelled streptavidin
(Oysters-488) allowed for site-specific protein immobilization
(Fig. 2; 12a and 12b). We further extended this concept using
the well established complexation of his-tagged eGFP to nickel
bound NTA. After rt nitroxide exchange on 1a and 1b with
NTA nitroxide 13, subsequent complexation of Ni2+ and
addition of his-tagged eGFP, site-selective protein immobili-
zation was achieved (Fig. 2, 14a and 14b).
3 Dynamic covalent bonds: P. T. Corbett, J. Leclaire, L. Vial,
K. R. West, J.-L. Wietor, J. K. M. Sanders and S. Otto, Chem.
Rev., 2006, 106, 3652; J.-M. Lehn, Chem. Soc. Rev., 2007, 36, 151.
4 (a) L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen,
B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas and J. L. West,
Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 13549; (b) E. C. Wiener,
M. W. Brechbiel, H. Brothers, R. L. Magin, O. A. Gansow,
D. A. Tomalia and P. C. Lauterbur, Magn. Reson. Med., 1994,
31, 1; (c) Y. Wang, A. Yu and F. Caruso, Angew. Chem., Int. Ed.,
2005, 44, 2888.
5 M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos,
Science, 1998, 281, 2013.
6 S. Angelos, E. Choi, F. Vogtle, L. De Cola and J. I. Zink, J. Phys.
¨
Chem. C, 2007, 111, 6589.
We also focused on the direct covalent attachment of
a protein to a zeolite crystal and chose the reliable reaction
of succinimido maleimides with thiols for covalent attachment
of a nitroxide to a protein.20 The TEMPO-maleimide derivative
1521 was reacted with free thiols of unfunctionalized
b-lactoglobulin A (LGA) or of rhodamine tagged bovine
serum albumin (BSA). Mass spectrometry analysis revealed
successful conjugation of the proteins with 15 (see ESIw). For
LGA a single product with the correct mass (LGA + 15) was
identified. However, for the heterogeneous BSA, as expected,
several product peaks were observed. Both nitroxide modified
proteins were then reacted with crystals 1a and 1b at rt.
Site-specific red fluorescence was detected in the reaction with
the BSA-nitroxide (Fig. 2, 16a and 16b). For the non-fluorescent
LGA nitroxide, we conducted z potential measurements and
compared the results with the z potentials of the fluorescent
7 Polymers and polymer brushes by radical nitroxide exchange:
C. J. Hawker, G. G. Barclay and J. Dao, J. Am. Chem. Soc., 1996,
118, 11467; N. J. Turro, G. Lem and I. S. Zavarine, Macromolecules,
2000, 33, 9782; O. G. Ballesteros, L. Maretti, R. Sastre and
J. C. Scaiano, Macromolecules, 2001, 34, 6184; Y. Higaki,
H. Otsuka and A. Takahara, Macromolecules, 2004, 37, 1696;
G. Yamaguchi, Y. Higaki, H. Otsuka and A. Takahara, Macro-
molecules, 2005, 38, 6316; S. B. Jhaveri, M. Beinhoff, C. J. Hawker,
K. R. Carter and D. Y. Sogah, ACS Nano, 2008, 2, 719; M. K. Brinks
and A. Studer, Macromol. Rapid Commun., 2009, 30, 1043; Nitroxides
in synthesis see: T. Vogler and A. Studer, Synthesis, 2008, 1979.
8 B. Schulte, M. Tsotsalas, M. Becker, A. Studer and L. De Cola,
Angew. Chem., Int. Ed., 2010, 49, 6881.
9 H. Fischer, Chem. Rev., 2001, 101, 3581; A. Studer, Chem.–Eur. J.,
2001, 7, 1159; A. Studer, Chem. Soc. Rev., 2004, 33, 267; A. Studer
and T. Schulte, Chem. Rec., 2005, 5, 27.
10 G. Calzaferri and A. Devaux, in Supramolecular Effects in Photo-
chemical and Photophysical Processes, ed. V. Ramamurthy and
Y. Inoue, Wiley, New York, 2010.
BSA–zeolite conjugates.
z potential measurements were
performed at rt at pH 7.4 in NH4HCO2-buffer. z (mV) were
similar (pore entrance modified BSA–zeolite: À31.32;
LGA–zeolite: À23.7; all over modified BSA: À2.89; LGA:
À5.42). Based on these results and the fluorescence images
shown in Fig. 2, we believe that both BSA and LGA were
immobilized successfully by nitroxide exchange reactions.
We reported that surface nitroxide exchange reactions
are well suited for a site-selective modification of zeolite L
microcrystals. We have shown that the nitroxide exchange is a
reversible process that can be conducted under mild, physio-
logical conditions at the zeolite surface. Proteins can be
immobilized site-specifically to zeolite L crystals by covalent
bond formation or by using his-tag, streptavidin tag or
concanavalin A–mannose interactions.
11 S. Megelski and G. Calzaferri, Adv. Funct. Mater., 2001, 11, 277;
A. Zabala Ruı
Chem., 2005, 136, 77; A. Zabala Ruı
and G. Calzaferri, in Materials Syntheses, A Practical Guide, ed.
´
z, D. Bruhwiler, T. Ban and G. Calzaferri, Monatsh.
¨
´
z, D. Bruhwiler, L.-Q. Dieu
¨
U. Schubert, N. Husing and R. Laine, Springer, Wien, 2008.
¨
12 A. Devaux, Z. Popovic, O. Bossart, L. De Cola, A. Kunzmann and
G. Calzaferri, Microporous Mesoporous Mater., 2006, 90, 69;
A. Zabala Ruız, H. Li and G. Calzaferri, Angew. Chem., Int.
´
Ed., 2006, 45, 5282; Z. Popovic, M. Otter, G. Calzaferri and L. De
Cola, Angew. Chem., Int. Ed., 2007, 46, 6188; G. Calzaferri,
´
A. Zabala Ruız, H. Li and S. Huber, Patent WO, 2007/012216.
13 S. Huber and G. Calzaferri, Angew. Chem., Int. Ed., 2004, 43, 6738;
M. Busby, H. Kerschbaumer, G. Calzaferri and L. De Cola,
Adv. Mater., 2008, 20, 1614.
14 S. Miele, P. Nesvadba and A. Studer, Macromolecules, 2009, 42,
2419; I. C. Wienhofer, A. Studer, Md. T. Rahman, T. Fukuyama
¨
and I. Ryu, Org. Lett., 2009, 11, 2457.
We thank the DFG (TRR61) for funding and Dr. Manuel
Tsotsalas for the preparation of zeolite L crystals.
15 S. Marque, H. Fischer, E. Baier and A. Studer, J. Org. Chem.,
2001, 66, 1146; A. L. J. Beckwith, V. W. Bowry and K. U. Ingold,
J. Am. Chem. Soc., 1992, 114, 4983; A. Studer, Angew. Chem.,
Int. Ed., 2000, 39, 1108.
16 J. W. Becker, G. N. Reeke Jr, B. A. Cunningham and
G. M. Edelman, Nature, 1976, 259, 406; A. J. Kalb (Gilboa) and
J. R. Helliwell, in Handbook of Metalloproteins, ed. A. Messerschmidt,
R. Huber, T. Poulos and K. Weghardt, Wiley, New York, 2001.
17 (a) D. K. Mandal, N. Kishore and C. F. Brewer, Biochemistry,
1994, 33, 1149; (b) Binding of ConA indicates a high mannose
concentration at the surface. Binding of ConA to single mannose is
weak (glycocluster effect): J. J. Lundquist and E. J. Toone, Chem.
Rev., 2002, 102, 555.
18 Adsorption of proteins to zeolites is comparatively weak at pH
values around 7 and stronger for small nanozeolites at higher
temperatures: Y.-Y. Hu, Y.-H. Zhang, N. Ren and Y. Tang,
J. Phys. Chem. C, 2009, 113, 18040; A. Tavolaro, P. Tavolaro
and E. Drioli, Colloids Surf., B, 2007, 55, 67.
Notes and references
1 G. Schmid, Nanoparticles, from Theory to Application, Wiley-
VCH, Weinheim, Germany, 2003; L. Nebhani and C. Barner-
Kowollik, Adv. Mater., 2009, 21, 3442; G. Whitesides, Nat.
Biotechnol., 2003, 21, 1161; M. Ferrari, Nat. Nanotechnol., 2008,
3, 131; J. Schulte, Nanotechnology: Global Strategies, Industry
Trends and Applications, Wiley, Portland, OR, 2005; V. Wagner,
A. Dullaart, A. Bock and A. Zweck, Nat. Biotechnol., 2006, 24,
1211; M. Ferrari, Nat. Rev. Cancer, 2005, 5, 161; K. Park, S. Lee,
E. Kang, K. Kim, K. Choi and C. Kwon, Adv. Funct. Mater., 2009,
19, 1553; D. A. LaVan, T. McGuire and R. Langer, Nat. Biotechnol.,
2003, 21, 1184.
2 M. J. Shenton and G. C. Stevens, J. Phys. D: Appl. Phys., 2001, 34,
2761; C. Oehr, M. Muller, B. Elkin, D. Hegemann and U. Vohrer,
¨
19 N. M. Green, Adv. Protein Chem., 1975, 29, 85.
Surf. Coat. Technol., 1999, 116, 25; P. Favia and R. d’Agostino,
Surf. Coat. Technol., 1998, 98, 1102; C.-M. Chan, T.-M. Ko and
H. Hiraoka, Surf. Sci. Rep., 1996, 24, 1; L. J. Gerenser, J. Adhes.
Sci. Technol., 1993, 7, 1019; K.-K. Iu, X. Liu and J. K. Thomas,
J. Photochem. Photobiol., A, 1994, 79, 103; M. Yamaguchi,
A. Tanaka and T. Suzuki, J. Electron Microsc., 1992, 41, 7.
20 H. Y. Song, M. H. Ngai, Z. Y. Song, P. A. MacAry, J. Hobley and
M. J. Lear, Org. Biomol. Chem., 2009, 7, 3400; S.-J. Xiao,
M. Wieland and S. Brunner, J. Colloid Interface Sci., 2005, 290,
172; M. D. Partis, D. G. Griffiths, G. C. Roberts and
R. B. Beechey, J. Protein Chem., 1983, 2, 263.
21 G. Wu and W. L. Hubbell, Biochemistry, 1993, 32, 879.
c
3394 Chem. Commun., 2011, 47, 3392–3394
This journal is The Royal Society of Chemistry 2011