Au-Yeung et al.
JOCArticle
Stoddart et al. have extensively studied donor-acceptor (DA)
catenanes based on the cationic π-deficient paraquat and
neutral π-rich systems such as hydroquinone, dioxynaphtha-
lene (DN), and tetrathiafulvalene.7 We have developed several
catenane and rotaxane systems based on neutral acceptor units
such as pyromellitic diimide or naphthalenediimide (NDI),
initially in organic solvents.8 Conventional wisdom and current
understanding of donor-acceptor interactions have led until
now to most of these catenanes being designed and synthesized
with the apparently obvious and presumed most favorable
alternate parallel arrangement of the π-rich and π-deficient
units, to give a DADA stack in the final structure. However, is
the apparently obvious conventional wisdom necessarily cor-
rect? If one designs and builds only DADA catenanes, then the
feasibility and properties of structures with other configura-
tions will remain unknown. We report here a detailed study of
donor-acceptor catenane synthesis in water using the dynamic
combinatorial approach and show that hitherto unknown and
apparently unfavorable configurations are in fact readily ac-
cessible. These investigations led us to the discovery of the first
nonclassical DA [2] catenanes containing two different donor
moieties and allowed us to propose a decisional flowchart that
predicts the formation of catenanes as a function of the donor
geometry.
FIGURE 1. Schematic representation of DA [2]catenane in (a) the
most usual DADA stacking, (b) the new DAAD stacking, and (c)
the , Gemini, nonparallel conformation. Aromatic π-donor (DN)
and π-acceptor (NDI) units are represented by purple and green
cartoons, respectively.
We have recently described in preliminary form the use of
donor-acceptor interactions in DCL systems9 and their
application in the dynamic combinatorial synthesis of cate-
nanes in water.10 To our surprise, a [2]catenane containing
two interlocked DA dimers was assembled from an NDI and
a DN dithiol building block. The interlocking of the two DA
units means that the conventional DADA stacking order
(Figure 1a) seen in most earlier catenanes is not possible in
this molecule. Instead a new DAAD structure (Figure 1b) is
formed; this structure is confirmed by NMR studies.10c We
believe that the conventional DADA [2]catenane cannot form
in this system because the small cavity of the acceptor dimer
does not allow the threading of a donor moiety through it.9b
Subsequent studies showed that slight structural modifications
(3) (a) Lim, C. W.; Sakamoto, S.; Yamaguchi, K.; Hong, J.-I. Org. Lett.
2004, 6, 1079. (b) Harada, A. Acc. Chem. Res. 2001, 34, 456. (c) Armspach,
D.; Ashton, P. R.; Ballardini, R.; Balzani, V.; Godi, A.; Moore, C. P.; Prodi,
L.; Spencer, N.; Stoddart, J. F.; Tolley, M. S.; Wear, T. J.; Williams, D. J.;
(7) For some recent examples, see: (a) Stoddart, J. F. Chem. Soc. Rev.
2009, 38, 1802. (b) Zhao, Y.-L.; Trabolsi, A.; Stoddart, J. F. Chem. Commun.
2009, 4844. (c) Spruell, J. M.; Paxton, W. F.; Olsen, J.-C.; Benıtez, D.;
´
Stoddart, J. F. Chem. Eur. J. 1995, 1, 33. (d) Armspach, D.; Ashton, P. R.;
Moore, C. P.; Spencer, N.; Stoddart, J. F.; Wear, T. J.; Williams, D. J. Angew.
Chem., Int. Ed. Engl. 1993, 32, 854.
(4) (a) Cao, D.; Amelia, M.; Klivansky, L. M.; Koshkakaryan, G.; Khan,
S. I.; Semeraro, M.; Silvi, S.; Venturi, M.; Credi, A.; Liu, Y. J. Am. Chem.
Soc. 2010, 132, 1110. (b) Li, S.; Liu, M.; Zheng, B.; Zhu, K.; Wang, F.; Li, N.;
Zhao, X.-L.; Huang, F. Org. Lett. 2009, 3350. (c) Liu, M.; Li, S.; Zhang, M.;
Zhou, Q.; Wang, F.; Hu, M.; Fronczek, F. R.; Li, N.; Huang, F. Org. Biomol.
Tkatchouk, E.; Stern, C. L.; Trabolsi, A.; Friedman, D. C.; Goddard, W. A.,
III; Stoddart, J. F. J. Am. Chem. Soc. 2009, 131, 11571. (d) Ramos, S.;
;
ꢀ
Alcalde, E.; Stoddart, J. F.; White, A. J. P.; Williams, D. J.; Perez-Garcıa, L.
´
ꢁ
ꢀ
New J. Chem. 2009, 33, 300. (e) Dichtel, W. R.; Miljanic, O. S.; Zhang, W.;
Spruell, J. M.; Patel, K.; Aprahamian, I.; Heath, J. R.; Stoddart, J. F. Acc.
Chem. Res. 2008, 41, 1750. (f) Griffiths, K. E.; Stoddart, J. F. Pure Appl.
Chem. 2008, 80, 485. (g) Stoddart, J. F.; Colquhoun, H. M. Tetrahedron 2008,
ꢁ
ꢀ
64, 8231. (h) Patel, K.; Miljanic, O. S.; Stoddart, J. F. Chem. Commun. 2008,
1853. (i) Coskun, A.; Saha, S.; Aprahamian, I.; Stoddart, J. F. Org. Lett.
Chem. 2009, 7, 1288. (d) Blanco, V.; Abella, D.; Pı
Peinador, C.; Quintela, J. M. Inorg. Chem. 2009, 48, 4098. (e) Koshkakaryan,
G.; Parimal, K.; He, J.; Zhang, X.; Abliz, Z.; Flood, A. H.; Liu, Y. Chem.
´
a, E.; Platas-Iglesias, C.;
ꢁ
ꢀ
2008, 10, 3187. (j) Miljanic, O. S.; Stoddart, J. F. Proc. Natl. Acad. Sci. U.S.A.
2007, 104, 12966. (k) Tomcsi, M. R.; Stoddart, J. F. J. Org. Chem. 2007, 72,
;
ꢀ
9335. (l) Alcalde, E.; Perez-Garcıa, L.; Ramos, S.; Stoddart, J. F.; White,
´
Eur. J. 2008, 14, 10211. (f) Liu, Y.; Bruneau, A.; He, J.; Abliz, Z. Org. Lett.
2008, 10, 765. (g) Liu, Y.; Klivansky, L. M.; Khan, S. I.; Zhang, X. Org. Lett.
2007, 9, 2577. (h) Nygaard, S.; Hansen, S. W.; Huffman, J. C.; Jensen, F.;
Flood, A. H.; Jeppesen, J. O. J. Am. Chem. Soc. 2007, 129, 7354. (i) Blanco,
V.; Chas, M.; Abella, D.; Peinador, C.; Quintela, J. M. J. Am. Chem. Soc.
A. J. P.; Williams, D. J. Chem. Eur. J. 2007, 13, 3964. (m) Ikeda, T.; Saha,
;
S.; Aprahamian, I.; Leung, K. C.-F.; Williams, A.; Deng, W.-Q.; Flood,
A. H.; Goddard, W. A., III; Stoddart, J. F. Chem. Asian J. 2007, 2, 76. (n)
ꢁ
ꢀ
Miljanic, O. S.; Dichtel, W. R.; Mortezaei, S.; Stoddart, J. F. Org. Lett. 2006,
8, 4835. (o) Liu, Y.; Bonvallet, P. A.; Vignon, S. A.; Khan, S. I.; Stoddart,
J. F. Angew. Chem., Int. Ed. 2005, 44, 3050.
´
2007, 129, 13978. (j) Chas, M.; Abella, D.; Blanco, V.; Pıa, E.; Blanco, G.;
Fernandez, A.; Platas-Iglesias, C.; Peinador, C.; Quintela, J. M. Chem.
;
Eur. J. 2007, 13, 8572. (k) Chas, M.; Blanco, V.; Peinador, C.; Quintela, J. M.
Org. Lett. 2007, 9, 675. (l) Chas, M.; Pıa, E.; Toba, R.; Peinador, C.; Quintela,
J. M. Inorg. Chem. 2006, 45, 6117.
(5) (a) Mullen, K. M.; Beer, P. D. Chem. Soc. Rev. 2009, 38, 1701. (b)
Vickers, M. S.; Beer, P. D. Chem. Soc. Rev. 2007, 36, 211. (c) Lankshear,
(8) (a) Pascu, S. I.; Naumann, C.; Kaiser, G.; Bond, A. D.; Sanders,
J. K. M.; Jarrosson, T. Dalton Trans. 2007, 3874. (b) Pascu, S. I.; Jarrosson,
T.; Naumann, C.; Otto, S.; Kaiser, G.; Sanders, J. K. M. New J. Chem. 2005,
29, 80. (c) Kaiser, G.; Jarrosson, T.; Otto, S.; Ng, Y.-F.; Bond, A. D.;
Sanders, J. K. M. Angew. Chem., Int. Ed. 2004, 43, 1959. (d) Raehm, L.;
Hamilton, D. G.; Sanders, J. K. M. Synlett 2002, 11, 1743. (e) Gunter, M. J.;
Bampos, N.; Johnstone, K. D.; Sanders, J. K. M. New J. Chem. 2001, 25, 166.
(f) Hansen, J. G.; Feeder, N.; Hamilton, D. G.; Gunter, M. J.; Becher, J.;
Sanders, J. K. M. Org. Lett. 2000, 2, 449. (g) Zheng, Q.; Hamilton, D. G.;
Feeder, N.; Teat, S. J.; Goodman, J. M.; Sanders, J. K. M. New J. Chem.
1999, 23, 897. (h) Hamilton, D. G.; Prodi, L.; Feeder, N.; Sanders, J. K. M.
J. Chem. Soc., Perkin Trans. 1 1999, 1057. (i) Hamilton, D. G.; Feeder, N.;
Prodi, L.; Teat, S. J.; Clegg, W.; Sanders, J. K. M. J. Am. Chem. Soc. 1998,
120, 1096. (j) Hamilton, D. G.; Feeder, N.; Teat, S. J.; Sanders, J. K. M. New
J. Chem. 1998, 1019. (k) Hamilton, D. G.; Davies, J. E.; Prodi, L.; Sanders,
´
M. D.; Evans, N. H.; Bayly, S. R.; Beer, P. D. Chem. Eur. J. 2007, 13, 3861.
;
(d) Ng, K.-Y.; Cowley, A. R.; Beer, P. D. Chem. Commun. 2006, 3676. (e)
Beer, P. D.; Sambrook, M. R.; Curiel, D. Chem. Commun. 2006, 2105. (f)
Lankshear, M. D.; Beer, P. D. Coord. Chem. Rev. 2006, 250, 3142.
~
(6) (a) Coronado, E.; Gavina, P.; Tatay, S. Chem. Soc. Rev. 2009, 38,
1674. (b) Silvi, S.; Venturi, M.; Credi, A. J. Mater. Chem. 2009, 19, 2279. (c)
Klajn, R.; Fang, L.; Coskun, A.; Olson, M. A.; Wesson, P. J.; Stoddart, J. F.;
Grzybowski, B. A. J. Am. Chem. Soc. 2009, 131, 4233. (d) Angelos, S.; Yang,
Y.-W.; Khashab, N. M.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2009,
131, 11344. (e) Kay, E. R.; Leigh, D. A. Pure Appl. Chem. 2008, 80, 17. (f)
Ikeda, T.; Stoddart, J. F. Sci. Technol. Adv. Mater. 2008, 9, 014104. (g)
Angelos, S.; Yang, Y.-W.; Patel, K.; Stoddart, J. F.; Zink, J. I. Angew. Chem.,
Int. Ed. 2008, 47, 2222. (h) Green, J. E.; Choi, J. W.; Boukai, A.; Bunimovich,
Y.; Johnston-Halperin, E.; Delonno, E.; Lou, Y.; Sheriff, B. A.; Xu, K.; Shin,
Y. S.; Tseng, H.-R.; Stoddart, J. F.; Heath, J. R. Nature 2007, 445, 414. (i)
Kay, E. R.; Leigh, D. A.; Zerbetto, F. Angew. Chem., Int. Ed. 2007, 46, 72. (j)
Saha, S.; Stoddart, J. F. Chem. Soc. Rev. 2007, 36, 77. (k) Champin, B.;
Mobian, P.; Sauvage, J.-P. Chem. Soc. Rev. 2007, 36, 358. (l) Nguyen, T. D.;
Liu, Y.; Saha, S.; Leung, K. C.-F.; Stoddart, J. F.; Zink, J. I. J. Am. Chem.
Soc. 2007, 129, 626. (m) Balzani, V.; Credi, A.; Silvi, S.; Venturi, M. Chem.
Soc. Rev. 2006, 35, 1135. (n) Flood, A. H.; Stoddart, J. F.; Steuerman, D. W.;
Heath, J. R. Science 2004, 306, 2055.
J. K. M. Chem. Eur. J. 1998, 4, 608. (l) Hamilton, D. G.; Sanders, J. K. M.
;
Chem. Commun. 1998, 1749. (m) Try, A. C.; Harding, M. M.; Hamilton,
D. G.; Sanders, J. K. M. Chem. Commun. 1998, 723. (n) Hamilton, D. G.;
Sanders, J. K. M.; Davies, J. E.; Clegg, W.; Teat, S. J. Chem. Commun. 1997,
897.
(9) (a) Au-Yeung, H. Y.; Cougnon, F. B. L.; Pantos-, G. D.; Sanders,
J. K. M. Chem. Sci. 2010, 567. (b) Au-Yeung, H. Y.; Pengo, P.; Pantos-, G. D.;
Otto, S.; Sanders, J. K. M. Chem. Commun. 2009, 419.
(10) (a) Au-Yeung, H. Y.; Pantos-, G. D.; Sanders, J. K. M. Angew.
Chem., Int. Ed. 2010, 49, 5331. (b) Au-Yeung, H. Y.; Pantos-, G. D.; Sanders,
J. K. M. J. Am. Chem. Soc. 2009, 131, 16030. (c) Au-Yeung, H. Y.; Pantos-,
G. D.; Sanders, J. K. M. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 10466.
1258 J. Org. Chem. Vol. 76, No. 5, 2011