The Journal of Organic Chemistry
NOTE
separated, and the aqueous layer extracted into CH2Cl2 (3 ꢀ 100 mL). The
combined organic layers were concentrated to dryness, and the resulting
solid purified by column chromatography (silica gel; CH2Cl2/CH3OH
95:5) to afford 12 (0.106 g, 0.178 mmol) in 89% yield as a colorless solid.
Mp 350 °C dec; 1H NMR (600 MHz, CDCl3) δ 3.14 (s, 9H; S(O)2CH3),
3.83 (d, 2J = 13.8 Hz, 3H; eq-H), 3.98 (s, 9H; OCH3), 4.83 (d, 2J = 13.8 Hz,
3H; ax-H), 7.06 (s, 3H; R-H), 7.96 (s, 3H; R0-H) ppm; 13C NMR (75
MHz, CDCl3) δ 36.5 (CH2), 43.1 (S(O)2CH3), 56.8 (OCH3), 113.9 (R-
C), 127.5 (γ0-C), 130.3 (β0-C), 131.2 (R0-C), 147.1 (β-C), 156.2 (γ-C)
ppm; IR (ATR) ν 1287 (SdO), 1139 (SdO) cm-1; ESI-HRMS found
617.09300, calcd for [M þ Naþ] 617.09442. Anal. Calcd for C27H30O9S3
(594.73): C, 54.5; H, 5.1. Found: C, 54.5; H, 5.2.
’ REFERENCES
(1) (a) Collet, A. Tetrahedron 1987, 43, 5725.(b) Collet, A. In
Comprehensive Supramolecular Chemistry; Atwood, J. L., Lehn, J.-M.,
Davies, J. E. D., MacNicol, D. D., V€ogtle, F., Eds.; Elsevier: Amsterdam,
The Netherlands, 1996; Vol. 2, p 325. (c) Brotin, T.; Dutasta, J.-P.
Chem. Rev. 2009, 109, 88.
(2) Garel, L.; Dutasta, J.-P.; Collet, A. Angew. Chem., Int. Ed. Engl.
1993, 32, 1169.
(3) Canceill, J.; Lacombe, L.; Collet, A. J. Am. Chem. Soc. 1985, 107, 6993.
(4) Garel, L.; Lozach, B.; Dutasta, J.-P.; Collet, A. J. Am. Chem. Soc.
1993, 115, 11652.
(5) Bartik, K.; Luhmer, M.; Dutasta, J.-P.; Collet, A.; Reisse, J. J. Am.
Chem. Soc. 1998, 120, 784.
2,7,12-Trimethoxy-3,8,13-trithiodihydro-5H-tribenzo[a,d,g]-
cyclononene (3). From 5: LiAlH4 (0.035 g, 0.9 mmol) was added to a
suspension of 5 (0.050 g, 0.0746 mmol) in anhydrous THF (20 mL)
at room temperature. After heating the resulting mixture at reflux for
12 h, the reaction was quenched by careful addition of ethylacetate
(25 mL) followed by 10% aqueous HCl (50 mL). The reaction
mixture was concentrated and extracted with CH2Cl2 (3 ꢀ 50 mL).
The combined organic layers were washed with water then dried
(MgSO4), and the solvents evaporated to dryness, affording 3 (0.025
g, 0.0547 mmol) in 73% yield, as a pale yellow solid. From 11:
Trifluoroacetic anhydride (0.690 mL, 4.9 mmol) was added dropwise
to a solution of 11 (0.300 g, 0.55 mmol) in anhydrous CH2Cl2 (75
mL). The temperature was raised to 0 °C and the reaction mixture
stirred at this temperature for 5 h, followed by 12 h at room
temperature. The solvent was evaporated and the residue retaken
in a mixture of triethylamine and methanol (1:1, 10 mL) under
nitrogen. The resulting solution was stirred at room temperature for
30 min, then concentrated to dryness. The residue was dissolved in
CH2Cl2 (100 mL), and shaken with a saturated aqueous solution of
NH4Cl (50 mL). The organic layer was separated, and the aqueous
phase extracted into CH2Cl2. The residue obtained after evaporation
of the solvent was purified by column chromatography (silica gel;
CH2Cl2/pentane, 50:50 then 80:20), which afforded 3 (0.200 g,
0.438 mmol) in 80% yield as a colorless solid. Mp 242-244 °C; 1H
NMR (300 MHz, CDCl3) δ 3.52 (d, 2J = 13.8 Hz, 3H; eq-H), 3.72 (s,
3H; SH), 3.87 (s, 9H; OCH3), 4.66 (d, 2J = 13.8 Hz, 3H; ax-H), 6.77
(s, 3H; R-H), 7.21 (s, 3H; R0-H) ppm; 13C NMR (75 MHz, CDCl3) δ
36.4 (CH2), 56.3 (OCH3), 112.3 (R-C), 118.8 (γ0-C), 130.8 (R0-C),
132.0 (β0-C), 138.2 (β-C), 154.0 (γ-C); ESI-HRMS found
479.07836, calcd for [M þ Naþ] 479.07798.
(6) (a) Canceill, J.; Gabard, J.; Collet, A. J. Chem. Soc., Chem.
Commun. 1983, 122. (b) Canceill, J.; Collet, A.; Gottarelli, G. J. Am.
Chem. Soc. 1984, 106, 5997.
(7) (a) Canceill, J.; Collet, A. New J. Chem. 1986, 10, 17. (b) Cram, D. J.;
Tanner, M. E.; Keipert, S. J.; Knobler, C. B. J. Am. Chem. Soc. 1991, 113, 8909.
(8) Garcia, C.; Collet, A. Bull. Soc. Chim. Fr. 1995, 132, 52.
(9) Brotin, T.; Roy, V.; Dutasta, J.-P. J. Org. Chem. 2005, 70, 6187.
(10) Garcia, C.; Malth^ete, J.; Collet, A. Bull. Soc. Chim. Fr. 1993,
130, 93.
(11) Garcia, C.; Andraud, C.; Collet, A. Supramol. Chem. 1992, 1, 31.
(12) Krejꢂci, L.; Budꢂeꢂsinskꢀy, M.; Císaꢂrovꢀa, I.; Kraus, T. Chem.
Commun. 2009, 3557.
(13) (a) Tam-Chang, S.-W.; Stehouwer, J. S.; Hao, J. J. Org. Chem.
1999, 64, 334. (b) Horng, Y.-C.; Lin, T.-L.; Tu, C.-Y.; Sung, T.-J.; Hsieh,
C.-C.; Hu, C.-H.; Lee, H. M.; Kuo, T.-S. Eur. J. Org. Chem. 2009, 1511.
(14) Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.;
Stoddart, J. F. Angew. Chem., Int. Ed. 2002, 41, 898.
(15) Hook, J.; Whitesides, G. M. J. Am. Chem. Soc. 1987, 109,
6825.
(16) (a) Kwart, H.; Evans, E. R. J. Org. Chem. 1966, 31, 410. (b)
Newman, M. S.; Karnes, H. A. J. Org. Chem. 1966, 31, 3980.
(17) Gibbs, C. G.; Sujeeth, P. K.; Rogers, J. S.; Stanley, G. G.; Krawiec,
M.; Watson, W. H.; Gutsche, C. D. J. Org. Chem. 1995, 60, 8394.
(18) Wuts, P. G. M.; Greene, T. W. Greene’s Protective Groups in
Organic Synthesis, 4th ed.; Wiley: Hoboken, NJ, 2006.
(19) (a) Fukuyama, T.; Nakatsuka, S.; Kishi, Y. Tetrahedron Lett.
1976, 38, 3393. (b) Topolski, M. J. Org. Chem. 1995, 60, 5588. (c) Fang,
Z.; Breslow, R. Bioorg. Med. Chem. Lett. 2005, 15, 5463. (d) van der Geer,
E. P. L.; van Koten, G.; Gebbink, R. J. M. K.; Hessen, B. Inorg. Chem.
2008, 47, 2849.
(20) Toste, F. D.; Still, I. W. J. Synlett 1995, 159.
(21) (a) Lindsey, A. S. J. Chem. Soc. 1965, 1685. (b) Hardie, M. J.
Chem. Soc. Rev. 2010, 39, 516.
(22) Testaferri, L.; Tiecco, M.; Tingoli, M.; Chianelli, D.; Maiolo, F.
Tetrahedron 1982, 38, 2721.
’ ASSOCIATED CONTENT
(23) Cabiddu, S.; Melis, S.; Piras, P. P.; Sotgiu, F. Synthesis 1982, 583.
(24) Gianneschi, N.; Bertin, P. A.; Nguyen, S. T.; Mirkin, C. A.;
Zakharov, L. N.; Rheingold, A. L. J. Am. Chem. Soc. 2003, 125, 10508.
(25) Pinchart, A.; Dallaire, C.; Van Bierbeek, A.; Gingras, M.
Tetrahedron Lett. 1999, 40, 5479.
(26) (a) Young, R. N.; Gauthier, J. Y.; Coombs, W. Tetrahedron Lett.
1984, 25, 1753. (b) Gryko, D. T.; Clausen, C.; Lindsey, J. S. J. Org. Chem.
1999, 64, 8635.
S
Supporting Information. General Experimental Meth-
b
1
ods and additional experimental procedures, copies of H and
13C NMR spectra for all compounds, and a crystallographic
information file (CIF). This material is available free of charge via
(27) Very careful column chromatography separations allowed us to
isolate small amounts of symmetrical diastereomers, as shown by H
’ AUTHOR INFORMATION
1
NMR spectroscopy.
(28) Collet, A.; Gabard, J.; Jacques, J.; Cesario, M.; Guilhem, J.;
Pascard, C. J. Chem. Soc., Perkin Trans. I 1981, 1630.
Corresponding Author
*E-mail: jean-claude.chambron@u-bourgogne.fr.
(29) Zimmermann, H.; Tolstoy, P.; Limbach, H.-H.; Poupko, R.;
Luz, Z. J. Phys. Chem. B 2004, 108, 18772.
’ ACKNOWLEDGMENT
(30) (a) van Strijdonck, G. P. F.; van Haare, J. A. E. H.; van der
Linden, J. G. M.; Steggerda, J. J.; Nolte, R. J. M. Inorg. Chem. 1994, 33,
999. (b) van Strijdonck, G. P. F.; van Haare, J. A. E. H.; H€onen, P. J. M.;
van den Schoor, R. C. G. M.; Feiters, M. C.; van der Linden, J. G. M.;
Steggerda, J. J.; Nolte, R. J. M. J. Chem. Soc., Dalton Trans. 1997, 449.
J.S. thanks the MENESR for a doctoral fellowship. We are
grateful to Marcel Soustelle for the elemental analyses, and
Marie-Josꢀe Penouilh for the ESI-HRMS spectra. The XRD
Service of CRM2 is acknowledged for technical support.
1917
dx.doi.org/10.1021/jo102324u |J. Org. Chem. 2011, 76, 1914–1917