organic compounds
8.67 (Huber et al., 1985), 3.26 (Baskaran et al., 1998) and 6.43ꢀ
(Dhavale et al., 1997). Thus, there is a correlation between the
dihedral angle value and the Csp2ÐN length, i.e. the longer
the Csp2ÐN bond, the smaller the dihedral angle. This result
could be useful when examining stereoselective additions onto
nitrones, since facial selectivity should be closely related to the
spatial arrangement of the chain set on the N atom.
Data collection
Enraf±Nonius CAD-4 diffrac-
tometer
!±2ꢂ scans
6039 measured re¯ections
2991 independent re¯ections
2072 re¯ections with I > ꢄ(I)
Rint = 0.048
ꢂmax = 30.0ꢀ
h = 7 ! 7
k = 0 ! 21
l = 0 ! 29
2 standard re¯ections
every 120 re¯ections
intensity decay: 4.0%
Re®nement
Re®nement on F
R = 0.056
wR = 0.040
S = 2.00
2072 re¯ections
208 parameters
H-atom parameters not re®ned
w = 1/[ꢄ2(Fo) + 0.00004|Fo|2]
(Á/ꢄ)max = 0.028
Experimental
(S)-(+)-Phenylglycinol was selectively O-benzylated using potassium
hydride and benzyl bromide in tetrahydrofuran (Meyers et al., 1978)
in a yield of 94%. The resultant amine was then oxidized by a three-
step sequence involving the formation of an imine with p-anis-
aldehyde, oxidation to the corresponding oxaziridine with meta-
chloroperoxybenzoic acid, and subsequent hydrolysis (Wovkulich &
Uskokovic, 1985) to yield O-benzylphenylglycinol N-hydroxylamine
in an overall yield of 78%. The hydroxylamine was then reacted with
isovaleraldehyde in the presence of magnesium sulfate as dehy-
drating agent (Dondoni et al., 1994), to yield the title nitrone as a
yellow oil in a non-optimized yield of 76%, according to the following
procedure: to a stirred solution of (S)-N-hydroxy-2-benzyloxy-1-
phenylethanamine (2.46 g, 10.1 mmol) in dichloromethane (30 ml)
placed under an inert atmosphere were added isovaleraldehyde
(869 mg, 10.1 mmol) and anhydrous magnesium sulfate (50 g). Stir-
ring was continued for a period of 12 h, after which the mixture was
®ltered over celite and the ®ltrate concentrated under vacuum to
yield the crude product. The latter was chromatographed on silica gel
using a mixture of pentane/ethyl acetate (1:1) as eluent to afford
2.37 g of the pure nitrone which crystallized upon standing at 279 K
(m.p. 321±322 K). 1H NMR (300 MHz, CDCl3, p.p.m.): ꢀ 0.92 (d, J =
6.0 Hz, 3H), 0.94 (d, J = 6.0 Hz, 3H), 1.89 (m, 1H), 2.41 (m, 2H), 3.75
(dd, J = 4.9, 10.1 Hz, 1H), 4.48 (t, J = 10.1 Hz, 1H), 4.53 (d, J = 12.1 Hz,
1H), 4.68 (d, J = 12.1 Hz, 1H), 4.95 (dd, J = 4.9, 10.1 Hz, 1H), 6.85 (t,
J = 6.0 Hz, 1H), 7.32 (m, 8H), 7.48 (m, 2H); 13C NMR (75 MHz,
CDCl3, p.p.m.): ꢀ 22.4, 25.9, 35.3, 69.5, 73.5, 77.9, 127.6, 127.8, 128.3,
128.5, 128.8, 134.7±137.9, 138.9 p.p.m.; analysis calculated for
C20H25NO2: C 77.14, H 8.09, N 4.50%; found: C 76.74, H 8.14, N 4.4%.
3
Ê
Áꢅmax = 0.21 e A
3
Ê
0.20 e A
Áꢅmin
=
The absolute con®guration of the reported structure was chosen
on the basis of the originating (S)-(+)-phenylglycinol. The H atoms
were placed geometrically and their Uiso values set to 1.2 of the Ueq
value of the parent atom.
Data collection: CAD-4 Software (Enraf±Nonius, 1989); cell
re®nement: CAD-4 Software; data reduction: TEXSAN (Molecular
Structure Corporation, 1992±1997); program(s) used to solve struc-
ture: SIR92 (Altomare et al., 1993); program(s) used to re®ne struc-
ture: TEXSAN; software used to prepare material for publication:
TEXSAN.
Supplementary data for this paper are available from the IUCr electronic
archives (Reference: SK1479). Services for accessing these data are
described at the back of the journal.
References
Altomare, A. M., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J.
Appl. Cryst. 26, 343±350.
Baskaran, S., Aurich, H. G., Biesmeier, F. & Harms, K. (1998). Tetrahedron, 54,
12249±12264.
Bloch, R. (1998). Chem. Rev. 98, 1407±1438.
Breuer, E. (1982). The Chemistry of Amino, Nitroso and Nitro Compounds,
and their Derivatives, edited by S. Patai, Part 1, ch. 13. New York: Wiley.
Cambridge Structural Database (2000). Version 2.3.8. Cambridge Crystallo-
graphic Data Centre, 12 Union Road, Cambridge, England.
Dhavale, D. D., Desai, V. N., Sindkhedkar, M. D., Mali, R. S., Castellari, C. &
Trombini, C. (1997). Tetrahedron Asymmetry, 8, 1475±1486.
Dondoni, A., Franco, S., Junquera, F., Merchan, F. L., Merino, P. & Tejero, T.
(1994). Synth. Commun. 24, 2537±2750.
Enders, D. & Reinhold, U. (1997). Tetrahedron Asymmetry, 8, 1895±1946.
Enraf±Nonius (1989). CAD-4 Software. Version 5.0. Enraf±Nonius, Delft, The
Netherlands.
Gothelf, K. V. & Jorgensen, K. A. (1998). Chem. Rev. 98, 863±909.
Hamer, J. & Macaluso, A. (1964). Chem. Rev. 64, pp. 473±495.
Hoffmann, R. W. (1989). Chem. Rev. 89, 1841±1861.
Crystal data
C20H25NO2
Mr = 311.42
Mo Kꢁ radiation
Cell parameters from 25
re¯ections
Orthorhombic, P212121
Ê
a = 5.639 (3) A
ꢂ = 10.1±11.6ꢀ
1
Ê
b = 15.073 (8) A
ꢃ = 0.07 mm
T = 293 K
Ê
c = 21.113 (7) A
3
Ê
V = 1794 (1) A
Orthorhombic prism, yellow
0.28 Â 0.25 Â 0.22 mm
Z = 4
Dx = 1.153 Mg m
3
Huber, R., Knierzinger, A., Obrecht, J.-P. & Vasella, A. (1985). Helv. Chim.
Acta, 68, 1730±1747.
Janzen, E. G., Evans, C. A. & Davis, E. R. (1978). In Organic Free Radicals;
Am. Chem. Soc. Symp. Ser., edited by W. A. Prior, Vol. 69, pp. 433±446.
Washington, DC: American Chemical Society.
Table 1
Selected geometric parameters (A, ).
ꢀ
Ê
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National
Laboratory, Tennessee, USA.
O1ÐN1
N1ÐC5
N1ÐC6
1.303 (2)
1.278 (2)
1.486 (2)
C4ÐC5
C6ÐC7
C6ÐC15
1.482 (2)
1.509 (2)
1.510 (2)
Lee, K. J. & Kim, D. H. (1998). Bioorg. Med. Chem. Lett. 8, 323±326.
Lombardo, M. & Trombini, C. (2000). Synthesis, 6, 759±774.
Meyers, A. I., Poindexter, G. S. & Brich, Z. (1978). J. Org. Chem. 43, 872±898.
Molecular Structure Corporation (1992±1997). TEXSAN. Version 1.7. MSC,
3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Thomas, C. E., Carney, J. M., Bernotas, R. C., Hay, D. A. & Carr, A. A. (1994).
Ann. NY Acad. Sci. 234, 243±249.
O1ÐN1ÐC5
O1ÐN1ÐC6
C5ÐN1ÐC6
N1ÐC5ÐC4
123.6 (1)
115.8 (1)
120.6 (1)
122.3 (2)
N1ÐC6ÐC7
N1ÐC6ÐC15
C7ÐC6ÐC15
109.3 (1)
111.0 (1)
114.0 (1)
Wovkulich, P. M. & Uskokovic, M. R. (1985). Tetrahedron, 41, 3455±3462.
ꢁ
1080 David Drouard et al.
C20H25NO2
Acta Cryst. (2001). C57, 1079±1080