five-membered rings, containing two heteroatoms. And
the thiazole ring is the most widely existing one. According
to the literature, the thiazole ring is an important scaffold
associated with several biological active compounds.4 For
instance, several natural molecules with a thiazolidinone
moiety are known to possess significant antitumor, immuno-
suppressive, and antibiotic properties.5 In addition, the amino-
thiazole ring system has found application in the drug
development for the treatment of allergies, hypertension,
and HIV infections.6 However, to the best of our knowl-
edge, the research on modified thiazolone derivatives has
mainly focused on racemic ones. Only one example using
2-benzyloxythiazol-5(4H)-ones as substrates in asym-
metric addition was reported by Ooi’s group in 2010.7
Therefore, the development of new highly efficient organic
synthetic methods to access optically active thiazolone deriv-
atives would be of great value for the drug-lead synthesis.
According to Lin’s report,8 in addition to the main keto
form, 2,4-disubstituted thiazolones can also exist in other
tautomeric forms in the solvent (mainly having an enol
form and a conjugated keto form). When the electron-
donating group was introduced into the C-2 position, less
likely tautomerism was observed. Thus in order to elim-
inate the undesired reactions, we chose the 2-(ethylthio)-
thiazolones which have an ethylthio- group at the C-2
position as the nucleophile to explore this aza-Mannich
reaction in the nonpolar solvents.
Figure 1. Chiral cinchona alkaloid derived catalysts screened in
this work.
N-tosyl aldimines,9 and it was proven that the cinchona
alkaloid derivatives were highly efficient catalysts in the
chiral R-disubstituted R,β-diamino acid synthesis. On the
basis of this, we decided to investigate the cinchona
alkaloid catalyst system in this reaction to see whether it
is viable for the synthesis of masked chiral 2-(ethylthio)-
thiazolone derivatives.
At the outset of the study, a variety of chiral cinchona
alkaloid catalysts (Figure 1) were tested in the selected
reaction of substrates 1a and 2a in the ethyl ether at 30 °C.
Initially, as is shown in Table 1, at 20 mmol %, all of
quinine derived catalysts 1a-d could catalyze this model
reaction well except 1c (entry 4), and catalyst 1b was the
most effective one affording the product 4a with a high
diastereomeric ratio of 95:5 and good enantioselectivity
(entry 2). Replacing the -OTMS group at the R position
with the sterically bulky groups (-OTBDMS and -OSi-
(Ph)3) resulted in longer reaction times and an obvious
decrease of enantioselectivities. Subsequently, we investi-
gated the other cinchona alkaloid catalysts 1g-i derived
from the quinidine and cinchonine, and none of them
could perform better than the catalyst 1b as well.
Furthermore, in the previous communication we have
described the asymmetric addition of oxazolones with
(4) (a) Zhao, H. Drug Discovery Today 2007, 12, 149. (b) Biron, E.;
Chatterjee, J.; Kessler, H. Org. Lett. 2006, 8, 2417. (c) Deng, S.;
Taunton, J. Org. Lett. 2005, 7, 299. (d) Sperry, J. B.; Wright, D. L.
Curr. Opin. Drug Discovery Dev. 2005, 8, 723. (e) Allen, S.; Newhouse,
B.; Anderson, A. S.; Fauber, B.; Allen, A.; Chantry, D.; Eberhardt, C.;
Odingo, J.; Burgess, L. E. Bioorg. Med. Chem. Lett. 2004, 14, 1619.
€
(f) Bohm, H.-J.; Flohr, A.; Stahl, M. Drug Discovery Today: Technol.
2004, 1, 217. (g) Wermuth, C. G. In The Practice of Medicinal Chemistry,
2nd ed.; Academic Press: London, 2003; p 193. (h) Barreca, M. L.;
€
Balzarini, J.; Chimirri, A.; Clercq, E. D.; Luca, L. D.; Holtje, H. D.;
Holtje, M.; Monforte, A. M.; Monforte, P.; Pannecouque, C.; Rao, A.;
In addition, when the bifunctional thiourea-tertiary
amine 1j was used in this model reaction (entry 9), only a
racemic product was obtained. It suggested that the thiourea
functionality was disadvantageous in this reaction because
of its strongly basic effect. To further improve the enan-
tioselectivity, we conducted a cursory examination of the
influence of the reaction temperature. Interestingly, except
for a slightly prolonged reaction time, a higher ee value of
€
ꢀ
Zappala, M. J. Med. Chem. 2002, 45, 5410.
(5) (a) Siddiqui, I. R.; Singh, P. K.; Singh, J.; Singh, J. J. Agric. Food
Chem. 2003, 51, 7062. (b) Kenderekar, P. S.; Siddiqui, R. F.; Patil, P. S.;
Bhusare, S. R.; Pawar, R. P. Ind. J. Pharm. Sci. 2003, 65, 313. (c) Galietta,
J. V.; Verkman, A. S. J. Biol. Chem. 2002, 277, 29224. (d) Rzasa, R. M.;
Shea, H. A.; Romo, D. J. Am. Chem. Soc. 1998, 120, 591. (e) Mulzer, J.;
Mantoulider, A.; Ohler, E. Tetrahedron Lett. 1997, 38, 7725. (f) Badorc, A.;
Bordes, M. F.; DeCointel, P.; Savi, P.; Lale, A.; Petitou, M.; Maffrand,
J. P.; Herbert, J. M. J. Med. Chem. 1997, 40, 3393.
(6) (a) Reddy, K. H.; Reddy, P. S.; Babu, P. R. J. Inorg. Biochem. 1999,
77, 169. (b) Perez, J. M.; Matesanz, A. I.; Marin-Ambite, A.; Navarro, P.;
Alonso, C.; Souza, P. J. Inorg. Biochem. 1999, 75, 255. (c) Hall, I. H.; Cheen,
S. Y.; Barnes, B. J.; Wext, X. D. Met. Based Drugs 1999, 6, 143–147.
(7) (a) Uraguchi, D.; Koshimoto, K.; Ooi, T. Chem. Commun. 2010,
46, 300. For racemic ones, see:(b) Havrylyuk, D.; Zimenkovsky, B.;
Vasylenko, O.; Zaprutko, L.; Gzella, A.; Lesyk, R. Eur. J. Med. Chem.
2009, 4, 1396. (c) Khan, S. A.; Yusuf, M. Eur. J. Med. Chem. 2009, 44,
2597. (d) Verma, A.; Saraf, S. K. Eur. J. Med. Chem. 2008, 43, 897.
(e) Qiao, Q.; Dominique, R.; Goodnow, R., Jr. Tetrahedron Lett. 2008,
49, 3682. (f) Thompson, M. J.; Heal, W.; Chen, B. Tetrahedron Lett.
2006, 47, 2361. (g) Boy, K. M.; Guernon, J. M. Tetrahedron Lett. 2005,
46, 2251. (h) Ochiai, M.; Nishi, Y.; Hashimoto, S.; Tsuchimoto, Y.;
Chen, D.-W. J. Org. Chem. 2003, 68, 7887. (i) Suzuki, M.; Morita, K.;
Yukioka, H.; Miki, N.; Mizutani, A. J. Pesticide Sci. 2003, 28, 37.
(j) Hodgetts, K. J.; Kershaw, M. T. Org. Lett. 2002, 4, 1363.
(k) Marcantonio, K. M.; Frey, F. L.; Murry, J. A.; Chen, C.-Y.
Tetrahedron Lett. 2002, 43, 8845. (l) Qiao, Q.; So, S.-S.; Goodnow,
R. A., Jr. Org. Lett. 2001, 3, 3655.
(9) For reviews on chiral cinchona alkaloid catalysts, see: (a) Connon,
S. J. Chem. Commun. 2008, 2499. (b) Marcelli, T.; van Maarseveen, J. H.;
Hiemstra, H. Angew. Chem., Int. Ed. 2006, 45, 7496. (c) Tian, S.-K.; Chen,
Y. G.; Hang, J. F.; Tang, L.; McDaid, P.; Deng, L. Acc. Chem. Res. 2004,
37, 621. (d) Chen, Y. G.; McDaid, P.; Deng, L. Chem. Rev. 2003, 103, 2965.
For selected examples of chiral cinchona alkaloid catalysis, see:(e) Liu, Y.;
Sun, B. F.; Wang, B. M.; Wakem, M.; Deng, L. J. Am. Chem. Soc. 2009,
131, 41. (f) Dodda, R.; Goldman, J. J.; Mandal, T.; Zhao, C.-G.; Broker,
G. A.; Tiekink, E. R. T. Adv. Synth. Catal. 2008, 350, 537. (g) Liu, T.-Y.;
Cui, H.-L.; Chai, Q.; Long, J.; Li, B. J.; Wu, Y.; Ding, L.-S.; Chen, Y.-C.
Chem. Commun. 2007, 2228. (h) Comer, E.; Rohan, E.; Deng, L., Jr.; Porco,
J. A. Org. Lett. 2007, 9, 2123. (i) Wang, J.; Li, H.; Zu, L.; Jiang, W.; Xie, H.;
Duan, W.; Wang, W. J. Am. Chem. Soc. 2006, 128, 12652. (j) Saaby, S.;
Bella, M.; Jørgensen, K. A. J. Am. Chem. Soc. 2004, 126, 8120. (k) Yoon,
T. P.; Jacobsen, E. N. Science 2003, 299, 1691. For chiral cinchona alkaloid
catalysis in our group recently, see:(l) Sun, W. S.; Hong, L.; Liu, C. X.;
Wang, R. Org. Lett. 2010, 12, 3914. (m)Liu, X. D.;Deng, L. J.;Jiang, X. X.;
Yan, W. J.; Liu, C. L.; Wang, R. Org. Lett. 2010, 12, 876.
(8) Lin, Y. H.; Andersen, K. K. Eur. J. Org. Chem. 2002, 557.
Org. Lett., Vol. 13, No. 6, 2011
1495