T. Tsukada et al. / Bioorg. Med. Chem. Lett. 20 (2010) 1004–1007
1007
activity compared to 10b. This high affinity would be obtained by
forming the hydrogen bonding network involving the side chain.
The X-ray co-crystal structures of lead compounds (6, 10b) pro-
vided us with the structural information which was beneficial to
further developments, and these results demonstrated the useful-
ness of structure-based drug design. Further efforts on identifying
various phosphonate prodrugs of the tricyclic 8H-indeno[1,2-
d][1,3]thiazoles to investigate in vivo activity are underway.
Acknowledgments
We thank Professor Noriyoshi Sakabe of the Structural Biology
Sakabe Project and Professor Soichi Wakatsuki of the Institute of
Materials Structure Science for the use of the facilities at the Pho-
ton Factory.
References and notes
1. (a) Benkovic, S. J.; deMaine, M. M. Adv. Enzymol. Relat. Areas Mol. Biol. 1982, 53,
45; (b) Gidh-Jain, M.; Zhang, Y.; van Poelje, P. D.; Liang, J.-Y.; Huang, S.; Kim, J.;
Elliott, J. T.; Erion, M. D.; Pilkis, S. J.; El-Maghrabi, M. R.; Lipscomb, W. N. J. Biol.
Chem. 1994, 269, 27732; (c) Zhang, Y.; Liang, J.; Huang, S.; Lipscomb, W. N. J.
Mol. Biol. 1994, 244, 609; (d) Iancu, C. V.; Mukund, S.; Fromm, H. J.; Honzatko, R.
B. J. Biol. Chem. 2005, 280, 19737; (e) Pilkis, S. J.; El-Maghrabi, M. R.; Pilkis, J.;
Claus, T. H. J. Biol. Chem. 1981, 256, 3619.
2. (a) Wright, S. W.; Hageman, D. L.; McClure, L. D.; Carlo, A. A.; Treadway, J. L.;
Mathiowetz, A. M.; Withka, J. M.; Bauer, P. H. Bioorg. Med. Chem. Lett. 2001, 11,
17; (b) Wright, S. W.; Carlo, A. A.; Carty, M. D.; Danley, D. E.; Hageman, D. L.;
Karam, G. A.; Levy, C. B.; Mansour, M. N.; Mathiowetz, A. M.; McClure, L. D.;
Nestor, N. B.; McPherson, R. K.; Pandit, J.; Pustilnik, L. R.; Schulte, G. K.; Soeller,
W. C.; Treadway, J. L.; Wang, I.-K.; Bauer, P. H. J. Med. Chem. 2002, 45, 3865.
3. Wright, S. W.; Carlo, A. A.; Danley, D. E.; Hageman, D. L.; Karam, G. A.; Mansour,
M. N.; McClure, L. D.; Pandit, J.; Schulte, G. K.; Treadway, J. L.; Wang, I.-K.;
Bauer, P. H. Bioorg. Med. Chem. Lett. 2003, 13, 2055.
4. Choe, J.-Y.; Nelson, S. W.; Arienti, K. L.; Axe, F. U.; Collins, T. L.; Jones, T. K.;
Kimmich, R. D. A.; Newman, M. J.; Norvell, K.; Ripka, W. C.; Romano, S. J.; Short,
K. M.; Slee, D. H.; Fromm, H. J.; Honzatko, R. B. J. Biol. Chem. 2003, 278, 51176.
5. (a) von Geldern, T. W.; Lai, C.; Gum, R. J.; Daly, M.; Sun, C.; Fry, E. H.; Abad-
Zapatero, C. Bioorg. Med. Chem. Lett. 2006, 16, 1811; (b) Lai, C.; Gum, R. J.; Daly,
M.; Fry, E. H.; Hutchins, C.; Abad-Zapatero, C.; von Geldern, T. W. Bioorg. Med.
Chem. Lett. 2006, 16, 1807.
6. Hebeisen, P.; Kuhn, B.; Kohler, P.; Gubler, M.; Huber, W.; Kitas, E.; Schott, B.;
Benz, J.; Joseph, C.; Ruf, A. Bioorg. Med. Chem. Lett. 2008, 18, 4708.
7. (a) Erion, M. D.; van Poelje, P. D.; Dang, Q.; Kasibhatla, S. R.; Potter, S. C.; Reddy,
M. R.; Reddy, K. R.; Jiang, T.; Lipscomb, W. N. Proc. Natl. Acad. Sci. 2005, 102,
7970; (b) Erion, M. D.; Dang, Q.; Reddy, M. R.; Kasibhatla, S. R.; Huang, J.;
Lipscomb, W. N.; van Poelje, P. D. J. Am. Chem. Soc. 2007, 129, 15480; (c) Dang,
Q.; Rao Kasibhatla, S.; Reddy, K. R.; Jiang, T.; Reddy, M. R.; Potter, S. C.; Fujitaki,
J. M.; van Poelje, P. D.; Huang, J.; Lipscomb, W. N.; Erion, M. D. J. Am. Chem. Soc.
2007, 129, 15491; (d) van Poelje, P. D.; Dang, Q.; Erion, M. D. Drug Discovery
Today 2007, 4, 103.
Figure 5. X-ray crystal structure of human liver FBPase in complex with 19a.
In order to understand the determinants of high affinity of 19a
with amide side chain, an X-ray crystal structure of human liver
FBPase in complex with 19a was determined (Fig. 5). The position
of phosphonate group and tricyclic scaffold of 19a is similar to
those of 10b with no side chain, which suggests the formation of
the hydrophobic interaction as in the case of 10b. In addition, the
amide side chain of 19a makes hydrogen bonds with the side chain
of Asp178 and two water molecules, as expected. One water mol-
ecule interacts with the backbone carbonyl oxygen of Val160, the
backbone nitrogen (NH) of Asp178 and the side chain of Asp178,
and the other water molecule interacts with the backbone nitrogen
(NH) of Cys179 and the side chain of Glu20. As a result, the side
chain of 19a forms the hydrogen bonding network involving
Val160, Asp178, Cys179, Glu20, and two water molecules. This
hydrogen bonding network would contribute to increase affinity.
In summary, we further developed a series of tricyclic 8H-inde-
no[1,2-d][1,3]thiazoles as potent FBPase inhibitors with the aid of
structure-based drug design. In order to enhance the metabolic
stability, lead compound 6 was modified to desamino compound
10b which showed 10-fold increase in inhibitory activity relative
to 6. The X-ray co-crystal structure of 10b suggested that hydro-
phobic interaction would compensate for the loss of the hydro-
gen-bonding interactions through the amino group. Furthermore,
introducing side chain with hydrogen bonding capability to 10b
led to the discovery of 19a which exhibited over 10-fold increased
8. Tsukada, T.; Takahashi, M.; Takemoto, T.; Kanno, O.; Yamane, T.; Kawamura, S.;
Nishi, T. Bioorg. Med. Chem. Lett. 2009, 19, 5909.
9. The X-ray crystallographic study was accomplished according to the procedure
described in Ref. 8. The FBPase-6, 10b, 19a cocrystals were diffracted to 2.45,
2.8, 2.25 Å in resolution, respectively. The coordinates and statistics are
available from the PDB using accession codes 3kbz, 3kc0, and 3kc1,
respectively.
10. Inhibition assays using recombinant human liver FBPase were performed
according to the methods described in Ref. 7c.