912
K. Dota et al. / Tetrahedron Letters 52 (2011) 910–912
H
H
I2 (2 eq)
O
BuLi (3 eq)
OH
8a
MeOH
rt, 4.5 h
THF
–78 °C, 0.5 h
I
References and notes
MeO
MeO
12
90%
13
52%
1. For selected reviews, see: (a) Yet, L. Tetrahedron 1999, 55, 9349–9403; (b) Yet, L.
Chem. Rev. 2000, 100, 2963–3007; (c) Majumdar, K. C.; Chattopadhyay, B. Curr.
Org. Chem. 2009, 13, 731–757.
2. (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413–4450; (b) Maier, M. E.
Angew. Chem., Int. Ed. 2000, 39, 2073–2077; (c) Nicolaou, K. C.; Bulger, P. G.;
Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4490–4527; (d) Michaut, A.;
Rodriguez, J. Angew. Chem., Int. Ed. 2006, 45, 5740–5750.
3. (a) Yu, Z.-X.; Wang, Y.; Wang, Y. Chem. Asian J. 2010, 5, 1072–1088; (b) Inglesby,
P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39, 2791–2805; (c) Liu, P.; Sirois, L. E.;
Cheong, P. H.-Y.; Yu, Z.-X.; Hartung, I. V.; Rieck, H.; Wender, P. A.; Houk, K. N. J.
Am. Chem. Soc. 2010, 132, 10127–10135. and references therein.
4. (a) Mitachi, K.; Shimizu, T.; Miyashita, M.; Tanino, K. Tetrahedron Lett. 2010, 51,
3983–3986; For the corresponding formal [5+2] cycloaddition reactions, see:
(b) Tanino, K.; Shimizu, T.; Miyama, M.; Kuwajima, I. J. Am. Chem. Soc. 2000,
124, 6116–6117; (c) Tanino, K.; Kondo, F.; Shimizu, T.; Miyashita, M. Org. Lett.
2002, 4, 2217–2219.
5. For reviews of cyclic dicobalt acetylene complexes, see: (a) Green, J. R. Eur. J.
Org. Chem. 2008, 6053–6062; (b) Hess, W.; Treutwein, J.; Hilt, G. Synthesis 2008,
3537–3562.
6. Cotton, F. A.; Jamerson, J. D.; Stults, B. R. J. Am. Chem. Soc. 1976, 98, 1774–
1779.
7. Kappe, C. O.; Murphree, S. S.; Padwa, A. Tetrahedron 1997, 53, 14179–14233.
8. (a) Noyori, R.; Hayakawa, Y. Org. React. 1983, 29, 163–344; (b) Hoffman, H. M. R.
Angew. Chem., Int. Ed. Engl. 1984, 23, 1–19; (c) Mann, J. Tetrahedron 1986, 42,
4611–4659; (d) Harmata, M. Tetrahedron 1997, 53, 6235–6280; (e) Rigby, J. H.;
Pigge, F. C. Org. React. 1997, 51, 351–478.
9. For recent studies on the mechanism of [4+3] cycloaddition reactions, see: (a)
Fernández, I.; Cossío, F. P.; Cózar, A.; Lledós, A.; Mascareñas, J. L. Chem. Eur. J.
2010, 16, 12147–12157; (b) Krenske, E. H.; Houk, K. N.; Harmata, M. Org. Lett.
2010, 12, 444–447.
H
H
O
H
H
O
O
I
H
H
I
14
D
E
MeOH
Scheme 5. Novel decomplexation reaction of cycloadduct 8a mediated by iodine.
oxygen bridge. While oxonium ion E possesses two reactive allylic
carbon atoms to be attacked by a nucleophile, regioselective intro-
duction of methanol occurs so as to effect maximum relief of ring
strain in the 1-oxabicyclo[3.3.0]octan-2,6-diene substructure.17
In summary, we have developed an efficient method for
constructing a 10-membered carbocycle with an oxygen bridge
via a formal [6+4] cycloaddition reaction. Under the influence of
EtAlCl2, dicobalt acetylene complex 7 possessing an allylsilane moi-
ety reacted with a furan derivative to afford a 11-oxabicy-
clo[6.2.1]undec-9-ene derivative. The product can be transformed
into 10-membered acetylene through a novel decomplexation reac-
tion mediated by iodine. It is noteworthy that a 11-oxabicy-
clo[6.2.1]undecane skeleton is widely found as a substructure of
natural products (e.g., oxygenated germacrane sesquiterpenoids
and cladiellin diterpenoids).18 We are currently exploring the syn-
thetic studies of marine terpenoids on the basis of the formal
[6+4] cycloaddition reaction.
10. For recent reports on construction of the 11-oxabicyclo[6.2.1]undecane
skeleton, see: (a) Zhang, L.; Wang, Y.; Buckingham, C.; Herndon, J. W. Org.
Lett. 2005, 7, 1665–1667; (b) Nakamura, T.; Oshida, M.; Nomura, T.; Nakazaki,
A.; Kobayashi, S. Org. Lett. 2007, 9, 5533–5536.
11. Jeffery, T. Tetrahedron Lett. 1989, 30, 2225–2228.
12. Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374–4376.
13. The structure of compound 9 was confirmed after hydrolysis of the enol silyl
ether moiety to give the corresponding ketone.
Acknowledgments
14. Decomplexation mediated by CAN: (a) Seyferth, D.; Nestle, M. O.; Wehman, A.
T. J. Am. Chem. Soc. 1975, 97, 7417–7426; For decomplexation mediated by
iodine, see: (b) Tanaka, S.; Tatsuta, N.; Yamashita, O.; Isobe, M. Tetrahedron
1994, 50, 12883–12894.
15. The structure was determined by X-ray crystallographic analysis of an analog
of compound 12 having a p-bromobenzoyloxy group instead of the methoxy
group.
16. Generation of similar tricyclic oxonium ions was reported: Mascal, M.;
Hafezi, N.; Meher, N. K.; Fettinger, J. C. J. Am. Chem. Soc. 2008, 130, 13532–
13533.
We thank Professor Tamotsu Inabe (Hokkaido University) for
the X-ray diffraction measurements. This work was partially sup-
ported by the Global COE Program (Project No. B01: Catalysis as
the Basis for Innovation in Materials Science) and Grant-in-Aid
for Scientific Research on Innovative Areas (Project No. 2105: Or-
ganic Synthesis Based on Reaction Integration) from the Ministry
of Education, Culture, Sports, Science and Technology, Japan.
17. Rearrangement of an oxygen bridge via a tricyclic oxonium ion intermediate:
Supplementary data
´
Braddock, D. C.; Millan, D. S.; Perez-Fuertes, Y.; Pouwer, R. H.; Sheppard, R. N.;
Solanki, S.; White, A. J. P. J. Org. Chem. 2009, 74, 1835–1841.
18. (a) Bernardelli, P.; Paquette, L. A. Heterocycles 1998, 49, 531–556; (b) Ellis, J. M.;
Crimmins, M. T. Chem. Rev. 2008, 108, 5278–5298.
Supplementary data (experimental procedures and character-
ization data for the new compounds) associated with this article