8
MEI ET AL.
nucleophilic glycine equivalents and β‐substituted‐α,β‐
unsaturated carboxylic acid derivatives: a general approach to
the stereochemically defined and sterically ϰ‐constrained α‐
amino acids. Curr Org Chem. 2002;6(4):341‐364. c)Urman S,
Gaus K, Yang Y, et al. The constrained amino acid β‐Acc confers
potency and selectivity to integrin ligands. Angew Chem Int Ed.
2007;46(21):3976‐3978. d)Mikhailiuk P, Afonin KS, Chernega
AN, et al. Conformationally rigid trifluoromethyl‐substituted
α‐amino acid designed for peptide structure analysis by solid‐
state19F NMR spectroscopy. Angew Chem Int Ed.
2006;45(34):5659‐5661.
via
palladium‐catalyzed
auxiliary‐directed
sp3
C–H
functionalization. Acc Chem Res. 2016;49(4):635‐645.
5. a)Qiu W, Gu X, Soloshonok VA, Carducci MD, Hruby VJ.
Stereoselective synthesis of conformationally constrained
reverse turn dipeptide mimetics. Tetrahedron Lett.
2001;42(2):145‐148. b)Soloshonok VA, Ueki H, Tiwari R, Cai
C, Hruby VJ. Virtually complete control of simple and face
diastereoselectivity in the Michael addition reactions between
achiral equivalents of a nucleophilic glycine and (S)‐ or (R)‐3‐
(E‐Enoyl)‐4‐phenyl‐1,3‐oxazolidin‐2‐ones: practical method for
preparation of β‐substituted Pyroglutamic acids and prolines. J
Org Chem. 2004;69(15):4984‐4990. c)Röschenthaler G‐V, Kukhar
VP, Kulik IB, et al. Asymmetric synthesis of
phosphonotrifluoroalanine and its derivatives using N‐tert‐
butanesulfinyl imine derived from fluoral. Tetrahedron Lett.
2012;53(5):539‐542.
4. For recent reviews, see:a)Kukhar VP, Sorochinsky AE,
Soloshonok VA. Practical synthesis of fluorine‐containing α‐
and β‐amino acids: recipes from Kiev, Ukraine. Future Med
Chem. 2009;1(5):793‐819. b)Soloshonok VA, Sorochinsky AE.
Practical methods for the synthesis of symmetrically α,α‐
6. a)Soloshonok VA, Ohkura H, Yasumoto M. Operationally con-
venient asymmetric synthesis of (S)‐ and (R)‐3‐Amino‐4,4,4‐
trifluorobutanoic acid. Part II: enantioselective biomimetic
transamination of 4,4,4‐Trifluoro‐3‐oxo‐N‐[(R)‐1‐phenylethyl)
butanamide. J Fluor Chem. 2006;127(7):930‐935. b)Shibata N,
Nishimine T, Shibata N, et al. Organic base‐catalyzed
stereodivergent synthesis of (R)‐ and (S)‐3‐amino‐4,4,4‐
trifluorobutanoic acids. Chem Commun. 2012;48(34):4124‐4126.
c)Soloshonok VA, Gerus II, Yagupolskii YL, Kukhar VP. Fluo-
rine‐containing amino acids. III. α‐Trifluoromethyl‐α‐amino
acids. Zh Org Khim. 1987;23:2308‐2313.
Disubstituted‐α‐amino
acids.
Synthesis.
2010;2010(14):2319‐2344. c)Kim Y, Park J, Kim MJ. Dynamic
kinetic resolution of amines and amino acids by enzyme–
metal cocatalysis. ChemCatChem. 2011;3(2):271‐277. d)Mikami
K, Fustero S, Sánchez‐Roselló M, Aceña JL, Soloshonok VA.
Sorochinsky a E synthesis of fluorine containing β‐amino acids.
Synthesis. 2011;2011:3045‐3079. e)Wang J, Zhang L, Jiang H,
Chen K, Liu H. Application of nickel (II) complexes to the effi-
cient synthesis of α‐ or β‐amino acids. Chimia.
2011;65(12):919‐924. f)Popkov A, De Spiegeleer B. Chiral nickel
(II) complexes in the preparation of 11 C‐and 18 F‐labelled
enantiomerically pure α‐amino acids. Dalton Trans.
2012;41(5):1430‐1440. g)So SM, Kim H, Mui L, Chin J. Mimick-
ing nature to make unnatural amino acids and chiral diamines.
7. For representative papers, see:a)Yamada T, Okada T, Sakaguchi
K, Ohfune Y, Ueki H, Soloshonok VA. Efficient asymmetric syn-
thesis of novel 4‐substituted and configurationally stable analogs
of thalidomide. Org Lett. 2006;8(24):5625‐5628. b)Tang X,
Soloshonok VA, Hruby VJ. Convenient asymmetric synthesis
of enantiomerically pure 2′,6′‐dimethyltyrosine (DMT) via alkyl-
ation of chiral nucleophilic Glycine equivalent. Tetrahedron:
Asymmetry. 2000;11(14):2917‐2925. c)Soloshonok VA, Cai C,
Hruby VJ. A practical asymmetric synthesis of enantiomerically
pure 3‐substituted pyroglutamic acids and related compounds.
Angew Chem Int Ed. 2000;39(12):2172‐2175. d)Soloshonok VA,
Tang X, Hruby VJ. Large‐scale asymmetric synthesis of novel
Eur
J
Org Chem. 2012;2012(2):229‐241. (h)Aceña JL,
Sorochinsky AE, Soloshonok VA. Recent advances in asymmet-
ric synthesis of α‐(trifluoromethyl)‐containing α‐amino acids.
Synthesis. 2012;44(11):1591‐1602. i)D'Arrigo P, Cerioli L, Servi
S, Viani F, Tessaroa D. Synergy between catalysts: enzymes
and bases. DKR of non‐natural amino acids derivatives. Cat
Sci Technol. 2012;2(8):1606‐1616. j)D'Arrigo P, Cerioli L, Fiorati
A, Servi S, Viani F, Tessaro D. Naphthyl‐l‐α‐amino acids via
chemo‐enzymatic dynamic kinetic resolution. Tetrahedron:
sterically
constrained
2′,6′‐dimethyl‐
and
α,2′,6′‐
Asymmetry.
2012;23(13):938‐944.
k)Periasamy
M,
trimethyltyrosine and –phenylalanine derivatives via alkylation
of chiral equivalents of nucleophilic Glycine and alanine. Tetra-
hedron. 2001;57(30):6375‐6382.
Gurubrahamam R, Sanjeevakumar N, et al. Convenient
methods for the synthesis of chiral amino alcohols and amines.
Chimia. 2013;67(1):23‐29. l)Turcheniuk KV, Kukhar VP,
Roeschenthaler G‐V, Aceña JL, Soloshonok VA, Sorochinsky
AE. Recent advances in the synthesis of fluorinated
aminophosphonates and aminophosphonic acids. RSC Adv.
2013;3(19):6693‐6716. m)Aceña JL, Sorochinsky AE, Moriwaki
H, Sato T, Soloshonok VA. Synthesis of fluorine‐containing α‐
amino acids in enantiomerically pure form via homologation
of Ni (II) complexes of glycine and alanine Schiff bases. J Fluor
Chem. 2013;155:21‐38. nBera K, Namboothiri INN. Asymmetric
synthesis of quaternary α‐amino acids and their phosphonate
analogues. Asian J Org Chem. 2014;3(12):1234‐1260. oMetz AE,
Kozlowski MC. Recent advances in asymmetric catalytic
methods for the formation of acyclic α, α‐disubstituted α‐
amino acids. J Org Chem. 2015;80(1):1‐7. pHe G, Wang B, Nack
WA, Chen G. Syntheses and transformations of α‐amino acids
8. aSorochinsky AE, Aceña JL, Moriwaki H, Sato T, Soloshonok
VA. Asymmetric synthesis of α‐amino acids via homologation
of Ni (II) complexes of glycine Schiff bases; Part 1: alkyl halide
alkylations. Amino Acids. 2013;45(4):691‐718. b)Sorochinsky
AE, Aceña JL, Moriwaki H, Sato T, Soloshonok VA. Asymmetric
synthesis of α‐amino acids via homologation of Ni (II) com-
plexes of glycine Schiff bases. Part 2: Aldol, Mannich addition
reactions, deracemization and (S) to (R) interconversion of α‐
amino acids. Amino Acids. 2013;45(5):1017‐1033. c)Aceña JL,
Sorochinsky AE, Soloshonok VA. Asymmetric synthesis of α‐
amino acids via homologation of Ni (II) complexes of glycine
Schiff bases. Part 3: Michael addition reactions and miscella-
neous transformations. Amino Acids. 2014;46(9):2047‐2073. d)
Wang Y, Song X, Wang J, Moriwaki H, Soloshonok VA, Liu
H. Recent approaches for asymmetric synthesis of α‐amino acids