S.-H. Lee et al. / Bioorg. Med. Chem. Lett. 19 (2009) 2444–2447
2447
Figure 2. Topo 1 inhibitory activities of compounds. Compounds were examined at a final concentration of 100
lM. Lane D: pBR322 only, Lane T: pBR322 + Topo 1, Lane C:
pBR322 + Topo 1 + CPT, Lane 1–10 or 1–14: pBR322 + Topo 1 + compounds.
Figure 3. Wall-eyed viewing docked model of compound 4e.
5. Morrell, A.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Cushman, M. J. Med. Chem.
was positioned as a DNA intercalator, and the PMB group was
located in the cavity between DNA and topo 1.
2006, 49, 7740.
6. Nagarajan, M.; Morrell, A.; Ioanoviciu, A.; Antony, S.; Kohlhagen, G.; Agama, K.;
Hollingshead, M.; Pommier, Y.; Cushman, M. J. Med. Chem. 2006, 49, 6283.
7. Xiao, X. S.; Antony, S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2005, 48, 3231.
8. Staker, B. L.; Feese, M. D.; Cushman, M.; Pommier, Y.; Zembower, D.; Stewart,
L.; Burgin, A. B. J. Med. Chem. 2005, 48, 2336.
9. Cho, W. J.; Le, Q. M.; My Van, H. T.; Youl Lee, K.; Kang, B. Y.; Lee, E. S.; Lee, S. K.;
Kwon, Y. Bioorg. Med. Chem. Lett. 2007, 17, 3531.
10. Le Thanh, N.; Van, H. T.; Lee, S. H.; Choi, H. J.; Lee, K. Y.; Kang, B. Y.; Cho, W. J.
Arch. Pharm. Res. 2008, 31, 6.
11. Le, T. N.; Gang, S. G.; Cho, W. J. J. Org. Chem. 2004, 69, 2768.
12. Van, H. T.; Le, Q. M.; Lee, K. Y.; Lee, E. S.; Kwon, Y.; Kim, T. S.; Le, T. N.; Lee, S. H.;
Cho, W. J. Bioorg. Med. Chem. Lett. 2007, 17, 5763.
13. Le, T. N.; Cho, W. J. Chem. Pharm. Bull. 2008, 56, 1026.
14. Cho, W. J.; Park, M. J.; Imanishi, T.; Chung, B. H. Chem. Pharm. Bull. 1999, 47, 900.
15. Blouin, M.; Frenette, R. J. Org. Chem. 2001, 66, 9043.
16. Padwa, A.; Rashatasakhon, P.; Ozdemir, A. D.; Willis, J. J. Org. Chem. 2005, 70, 519.
17. All synthesized compounds were fully characterized by spectroscopy. Selected data
for some compounds: 4a; mp: 153.4–157 0 °C, IR (cmÀ1): 1639 (C@O), 1H NMR
(300 MHz, CDCl3) d 8.57 (d, J = 7.8 Hz, 1H), 7.72–7.70 (m, 2H), 7.55–7.50 (m,
1H), 7.45–7.40 (m, 1H), 7.36–7.28 (m, 2H), 7.24 (dd, J = 1.1, J = 8.0 Hz, 1H),
4.58–4.53 (m, 2H), 3.55 (s, 1H), 3.15–3.08 (m, 1H), 2.53–2.41 (m, 1H). EI-MS m/
z (%) 277 (M+, 100). Compound 4b; mp: 169.7–173.9 °C, IR (cm-1): 1639 (C@O),
1H NMR (300 MHz, CDCl3) d 8.45 (d, J = 8.2 Hz, 1H), 7.49 (s, 1H), 7.42 (t,
J = 7.5 Hz, 1H), 7.36–7.28 (m, 3H), 7.23 (d, J = 8.1 Hz, 1H), 4.57–4.53 (m, 2H),
3.54 (s, 3H), 3.14–3.08 (m, 1H), 2.52 (s, 3H), 2.48–2.39 (m, 1H). EI-MS m/z (%)
291 (M+, 84). Compound 5a; mp: 173.1–176.9 0C, IR (cmÀ1): 1648 (C@O), 1H
NMR (300 MHz, CDCl3) d 8.51 (d, J = 7.9 Hz, 1H), 7.71 (t, J = 8.3 Hz, 1H), 7.59 (d,
J = 8.2 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.5 Hz, 1H), 7.11–7.06 (m, 2H),
5.80 (dd, J = 6.6, J = 13.3 Hz, 1H), 3.81 (s, 3H), 1.33 (d, J = 6.7 Hz, 3H). EI-MS m/z
(%) 277 (M+, 100). Compound 5b; mp: 146.2–150.7 °C, IR (cmÀ1): 1646 (C@O),
1H NMR (300 MHz, CDCl3) d 8.39 (d, J = 8.2 Hz, 1H), 7.59 (d, J = 8.3 Hz, 1H), 7.32
(t, J = 6.9 Hz, 2H), 7.10–7.05 (m, 3H), 5.78 (dd, J = 6.6, J = 13.1 Hz, 1H), 3.79 (s,
3H), 2.52 (s, 3H), 1.33 (d, J = 6.7 Hz, 3H). EI-MS m/z (%) 291 (M+, 88).
18. Rubinstein, L. V.; Shoemaker, R. H.; Paull, K. D.; Simon, R. M.; Tosini, S.; Skehan,
P.; Scudiero, D. A.; Monks, A.; Boyd, M. R. J. Natl. Cancer Inst. 1990, 82, 1113.
19. Zhao, L. X.; Moon, Y. S.; Basnet, A.; Kim, E. K.; Jahng, Y.; Park, J. G.; Jeong, T. C.;
Cho, W. J.; Choi, S. U.; Lee, C. O.; Lee, S. Y.; Lee, C. S.; Lee, E. S. Bioorg. Med. Chem.
Lett. 2004, 14, 1333.
In conclusion, we synthesized various benz[b]oxepine and 12-
oxobenzo[c]phenanthridines as analogs of constrained 3-aryliso-
quinolines structures. An intramolecular radical cycloaddition
reaction was employed to efficiently generate benz[b]oxepine
and 12-oxobenzo[c]phenanthridines. Although 3-arylisoquinoline
synthetic intermediates did not exhibit interesting biological activ-
ities, the oxepine compounds, that is, the constrained structures of
3-arylisoquinolines, exhibited more potent topo 1 inhibitory activ-
ity than CPT. Among the synthesized compounds, 4e had potent
topo 1 inhibitory activity as well as cytotoxicity against three dif-
ferent tumor cell lines. To further explain the topo 1 inhibitory
activity of 4e, molecular docking studies were carried out with
the Surflex–Dock program to give a reasonable binding mode of
the compound in the binding site of DNA and topo 1. For further
study of constrained structures of 3-arylisoquinolines, we are cur-
rently investigating diverse structural modifications in the synthe-
sis of 3-arylisoquinolines, and the results and structure–activity
relationships will be reported in due course.
Acknowledgment
This work was supported by a Korea Research Foundation Grant
(KRF-2007-521-E00190).
References and notes
1. Liew, S. T.; Yang, L. X. Curr. Pharm. Des. 2008, 14, 1078.
2. Creemers, G. J.; Lund, B.; Verweij, J. Cancer Treat. Rev. 1994, 20, 73.
3. Pommier, Y. Nat. Rev. Cancer 2006, 6, 789.
4. Meng, L. H.; Liao, Z. Y.; Pommier, Y. Curr. Top. Med. Chem. 2003, 3, 305.
20. Jain, A. N. J. Comput. Aided Mol. Des. 2007, 21, 281.