Organic Letters
Letter
1960. (d) Meng, G.; Lei, P.; Szostak, M. Org. Lett. 2017, 19, 2158.
(e) Amani, J.; Alam, R.; Badir, S.; Molander, G. A. Org. Lett. 2017, 19,
2426. (f) Ni, S.; Zhang, W.; Mei, H.; Han, J.; Pan, Y. Org. Lett. 2017,
19, 2536. (g) Lei, P.; Meng, G.; Shi, S.; Ling, Y.; An, J.; Szostak, R.;
references cited therein. For primary references on ester and amide
Suzuki couplings, see: (h) Tatamidani, H.; Kakiuchi, F.; Chatani, N.
Org. Lett. 2004, 6, 3597. (i) Li, X.; Zou, G. Chem. Commun. 2015, 51,
5089. (j) Meng, G.; Szostak, M. Org. Biomol. Chem. 2016, 14, 5690 and
references cited therein.
(4) For representative decarbonylative coupling, see: (a) Meng, G.;
Szostak, M. Angew. Chem., Int. Ed. 2015, 54, 14518. (b) Shi, S.; Meng,
G.; Szostak, M. Angew. Chem., Int. Ed. 2016, 55, 6959. (c) Meng, G.;
Szostak, M. Org. Lett. 2016, 18, 796. (d) Dey, A.; Sasmal, S.; Seth, K.;
Lahiri, G. K.; Maiti, D. ACS Catal. 2017, 7, 433. (e) Yue, H.; Guo, L.;
Liao, H. H.; Cai, Y.; Zhu, C.; Rueping, M. Angew. Chem., Int. Ed. 2017,
56, 4282. (f) Yue, H.; Guo, L.; Lee, S. C.; Liu, X.; Rueping, M. Angew.
Chem., Int. Ed. 2017, 56, 3972. (g) Shi, S.; Szostak, M. Org. Lett. 2017,
19, 3095 and references cited therein.
(5) For representative tandem coupling, see: Walker, J. A.;
Vickerman, K. L.; Humke, J. N.; Stanley, L. M. J. Am. Chem. Soc.
2017, 139, 10228 and references cited therein.
(6) Review on electrophilic activation of amides: (a) Kaiser, D.;
Maulide, N. J. Org. Chem. 2016, 81, 4421. For an overview of amide
cross-coupling, see: (b) Ruider, S. A.; Maulide, N. Angew. Chem., Int.
Ed. 2015, 54, 13856. For a report on using amides as latent substrates,
see: (c) Valerio, V.; Petkova, D.; Madelaine, C.; Maulide, N. Chem. -
Eur. J. 2013, 19, 2606.
the ring nitrogen is favored in 1a, 1k, and 1l (ΔPA = 2.6, 4.0,
16.1 kcal/mol).
Collectively, the structural and energetic parameters of the
amide bond in MAP amides indicate that nN→πAr delocaliza-
tion is the major factor enabling selective N−C activation. The
capacity to switch RE in a rational manner could open up new
avenues for activating amides in N−C coupling reactions.
In summary, we have developed the first method for the
direct activation of N-methylamino pyrimidyl amides (MAPA)
by selective N−C amide bond cleavage. The reported reaction
uses commercially available and bench-stable Pd-NHC
precatalysts, occurs with high N−C activation chemoselectivity,
and is operationally simple. Most importantly, this report
introduces MAP amides as resonance-controlled, practical
alternatives to anilides for a range of catalytic coupling
reactions via acyl- and decarbonylative pathways. In these
amides, the N−X cleavage reaction, the most common side
process in the amide bond activation, is not observed. MAP
amides provide rapid entry to acyl metal intermediates from
unactivated primary and secondary amides. Mechanistic studies
strongly support nN→πAr delocalization. Studies on expanding
the scope of the amide bond cross-coupling are underway.
ASSOCIATED CONTENT
* Supporting Information
■
S
(7) Review on acyl-metal intermediates: (a) Dzik, W. I.; Lange, P. P.;
Gooßen, L. J. Chem. Sci. 2012, 3, 2671. For the seminal study on
cross-coupling of unactivated aryl esters, see: (b) Amaike, K.; Muto,
K.; Yamaguchi, J.; Itami, K. J. Am. Chem. Soc. 2012, 134, 13573.
(8) (a) Szostak, R.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, M. J.
Org. Chem. 2016, 81, 8091. (b) Pace, V.; Holzer, W.; Meng, G.; Shi, S.;
Lalancette, R.; Szostak, R.; Szostak, M. Chem. - Eur. J. 2016, 22, 14494.
(c) See ref 1c.
The Supporting Information is available free of charge on the
Experimental procedures and characterization data
X-ray crystallographic data for 1b (CIF)
(9) (a) Greenberg, A., Breneman, C. M., Liebman, J. F., Eds. The
Amide Linkage: Structural Significance in Chemistry, Biochemistry, and
Materials Science; Wiley: New York, 2000. Pharmaceuticals:
(b) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54, 3451.
Polymers: (c) Marchildon, K. Macromol. React. Eng. 2011, 5, 22.
Peptides: (d) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.
(10) Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis;
Pergamon Press: Oxford, 1991.
(11) Szostak, R.; Meng, G.; Szostak, M. J. Org. Chem. 2017, 82, 6373.
(12) Johansson-Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.;
Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
(13) (a) Fortman, G. C.; Nolan, S. P. Chem. Soc. Rev. 2011, 40, 5151.
(b) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.;
Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101.
(14) (a) Nolan, S. P., Cazin, C. S. J., Eds. Science of Synthesis: N-
Heterocyclic Carbenes in Catalytic Organic Synthesis; Thieme: Stuttgart,
2017. (b) Hazari, N.; Melvin, P. R.; Beromi, M. M. Nat. Rev. Chem.
2017, 1, 25.
(15) For a review on stereoelectronic effects, see: Vatsadze, S. Z.;
Loginova, Y. D.; dos Passos Gomes, G.; Alabugin, I. V. Chem. - Eur. J.
2017, 23, 1521.
(16) For the seminal report on MAP amides, see: (a) Meyers, A. I.;
Comins, D. L. Tetrahedron Lett. 1978, 19, 5179. Note that these
amides could also be referred to as N-methyl-N-pyrimidyl amides.
(b) Bennet, A. J.; Somayaji, V.; Brown, R. S.; Santarsiero, B. D. J. Am.
Chem. Soc. 1991, 113, 7563. (c) See SI for additional details.
(17) Okamoto, I.; Nabeta, M.; Yamamoto, M.; Mikami, M.; Takeya,
T.; Tamura, O. Tetrahedron Lett. 2006, 47, 7143.
(18) (a) Lei, P.; Meng, G.; Ling, Y.; An, J.; Szostak, M. J. Org. Chem.
2017, 82, 6638. For a review, see: (b) Valente, C.; Calimsiz, S.; Hoi,
K. H.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem., Int. Ed. 2012,
51, 3314.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Rutgers University and the NSF (CAREER CHE-1650766) are
gratefully acknowledged for support. The Bruker 500 MHz
spectrometer was supported by the NSF-MRI grant (CHE-
1229030). We thank the Wrocław Center for Networking and
Supercomputing (grant number WCSS159).
REFERENCES
■
(1) (a) Takise, R.; Muto, K.; Yamaguchi, J. Chem. Soc. Rev. 2017,
Synlett 2016, 27, 2530. (c) Liu, C.; Szostak, M. Chem. - Eur. J. 2017,
23, 7157. (d) Dander, J. E.; Garg, N. K. ACS Catal. 2017, 7, 1413.
(2) (a) de Meijere, A., Brase, S., Oestreich, M., Eds. Metal-Catalyzed
̈
Cross-Coupling Reactions and More; Wiley: New York, 2014. (b) Mo-
lander, G. A., Wolfe, J. P., Larhed, M., Eds. Science of Synthesis: Cross-
Coupling and Heck-Type Reactions; Thieme: Stuttgart, 2013.
(3) For representative acyl coupling, see: (a) Hie, L.; Nathel, N. F. F.;
Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y. F.; Liu, P.; Houk, K. N.;
Garg, N. K. Nature 2015, 524, 79. (b) Meng, G.; Szostak, M. Org. Lett.
2015, 17, 4364. (c) Lei, P.; Meng, G.; Szostak, M. ACS Catal. 2017, 7,
D
Org. Lett. XXXX, XXX, XXX−XXX