ORGANIC
LETTERS
2011
Vol. 13, No. 7
1602–1605
Organocatalytic Approach to
Polysubstituted Piperidines and
Tetrahydropyrans
You Wang,† Shaolin Zhu,‡ and Dawei Ma*,‡
Department of Chemistry, Fudan University, Shanghai 200433, China, and State Key
Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China
Received January 3, 2011
ABSTRACT
Polysubstituted piperidines and tetrahydropyrans are synthesized from aldehydes and two classes of trisubstituted nitroolefins via an O-TMS
protected diphenylprolinol catalyzed domino Michael addition/aminalization (or acetalization) process. This approach allows formation of four
contiguous stereocenters in the piperidine or tetrahydropyran ring in one step with excellent enantioselectivity.
In recent years, organocatalytic Michael addition of
aldehydes to nitroolefins has received great attention.1,2,4a,4b
However, attempts to extend the reaction scope to trisub-
stituted nitroolefins are rare.3 Until now only two such
substrates, 1-nitrocyclohexene and 1-nitrocyclopentene,
were reported to be suitable Michael acceptors for
this reaction.3 This problem might result from these
trisubstituted olefins being less reactive owing to their
steric hindrance and electronic nature.
By employing functionalized electron-deficient olefins,
we have explored the scope of organocatalytic Michael
addition and found some synthetically useful reactions.4
Recently, we discovered that Cbz-protected 1-amino-
methyl nitroolefins 3 could react with aldehydes under
the catalysis of O-TMS protected diphenylprolinol to give
adducts 4 (Scheme 1), which spontaneously underwent
aminalization to provide polysubstituted piperidines 5.5,6
Additionally, 1-hydroxymethyl nitroolefins were found to
undergo a similar process to afford polysubstituted tetra-
hydropyrans. Herein, we wish to disclose our results.
† Fudan University.
‡ Chinese Academy of Sciences.
(1) For reviews, see: (a) Dondoni, A.; Massi, A. Angew. Chem., Int.
´
Ed. 2008, 47, 4638. (b) Vicario, J. L.; Badıa, D.; Carrillo, L. Synthesis
2007, 2065.
(2) For selected examples, see: (a) Betancort, J. M.; Barbas, C. F., III.
Org. Lett. 2001, 3, 3737. (b) Wang, W.; Wang, J.; Li, H. Angew. Chem.,
Int. Ed. 2005, 44, 1369. (c) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji,
M. Angew. Chem., Int. Ed. 2005, 44, 4212. (d) Luo, S.; Mi, X.; Zhang, L.;
Liu, S.; Xu, H.; Cheng, J.-P. Angew. Chem., Int. Ed. 2006, 45, 3093. (e)
Palomo, C.; Vera, S.; Mielgo, A.; Gomez-Bengoa, E. Angew. Chem., Int.
Ed. 2006, 45, 5984. (f) Mase, N.; Watanabe, K.; Yoda, H.; Takabe, K.;
Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc. 2006, 128, 4966. (g)
Wiesner, M.; Revell, J. D.; Wennemers, H. Angew. Chem., Int. Ed. 2008,
(4) (a) Zhu, S.; Yu, S.; Ma, D. Angew. Chem., Int. Ed. 2008, 47, 545.
(b) Zhu, S.; Yu, S.; Wang, Y.; Ma, D. Angew. Chem., Int. Ed. 2010, 49,
4656. (c) Wang, J.; Yu, F.; Zhang, X.; Ma, D. Org. Lett. 2008, 10, 3075.
(f) Wang, J.; Ma, A.; Ma, D. Org. Lett. 2008, 10, 5425. (d) Zhu, S.; Wang,
Y.; Ma, D. Adv. Synth. Catal. 2009, 351, 2563. (e) Xu, D.; Zhang, Y.;
Ma, D. Tetrahedron Lett. 2010, 51, 3827.
ꢀ ^
´ ´
47, 1871. (h) Garcıa-Garcıa, P.; Ladepeche, A.; Halder, R.; List, B.
Angew. Chem., Int. Ed. 2008, 47, 4719. (i) Uehara, H.; Barbas, C. F., III.
Angew. Chem., Int. Ed. 2009, 48, 9848.
(3) (a) Guo, L.; Chi, Y.; Almeida, A. M.; Guzei, I. A.; Parker, B. K.;
Gellman, S. H. J. Am. Chem. Soc. 2009, 131, 16018. (b) Stevenson, B.;
Lewis, W.; Dowden, J. Synlett. 2010, 672.
(5) For reviews, see: (a) Weintraub, P. M.; Sabol, J. S.; Kane, J. M.;
Borcherding, D. R. Tetrahedron 2003, 59, 2953. (b) Buffat, M. G. P.
Tetrahedron 2004, 60, 1701. (c) Harrity, J. P. A.; Provoost, O. Org.
Biomol. Chem. 2005, 3, 1349. (d) Escolano, C.; Amat, M.; Bosch, J.
Chem.;Eur. J. 2006, 12, 8198.
r
10.1021/ol200004s
Published on Web 03/01/2011
2011 American Chemical Society